Теория вероятностей

Численное выражение возможности наступления какого-либо события. Классическое определение вероятности. Понятие объема совокупности (выборочной или генеральной). Комплексная оценка параметров генеральной совокупности. Среднее квадратическое отклонение.

Подобные документы

  • Контрольная работа, вариант 1. Решение двух задач по математике. Вычисления. Число интервалов по формуле Стерджесса. Длина интервала и границы интервалов. Модальный интервал, среднее квадратическое отклонение. Психологическая интерпретация. Дисперсии.

    дипломная работа, добавлен 12.12.2008

  • Характеристика сути анализа выборки методом критерия Пирсона. Первичная обработка одномерной выборки. Расчет основных характеристик случайной величины по сгруппированным данным. Проверка гипотезы о равномерном распределении генеральной совокупности.

    курсовая работа, добавлен 11.02.2016

  • Формула полной вероятности как следствие теорем о сложении и умножении вероятностей. Примеры применения формулы. Определение вероятности события А, которое может произойти только вместе с одним из событий образующих полную группу несовместных событий.

    презентация, добавлен 01.11.2013

  • Определение суммы вероятностей всех элементарных событий. Формула нахождения вероятности наступления определенного количества успехов в серии из множества испытаний Бернулли. Несовместные - исходы, которые не наступают при проведении одного опыта.

    презентация, добавлен 09.11.2015

  • Определение закона распределения случайной величины. Нахождение плотности распределения, математического ожидания, дисперсии и среднего квадратического отклонения. Построение графиков дифференциальной и интегральной функций. Анализ вероятности события.

    контрольная работа, добавлен 14.12.2015

  • Математическая статистика как наука об общих способах результатов экспериментов. Установление закономерностей, которым подчинены массовые случайные явления. Понятие систематической и случайной ошибок. Сущность выборочной и генеральной совокупностей.

    реферат, добавлен 12.09.2019

  • Теория вероятностей как математическая наука, позволяющая по вероятностям одних случайных событий находить возможность появления других, связанных каким-либо образом с первыми. Периодизация истории науки и ее применения в естествознании и технике.

    контрольная работа, добавлен 20.11.2013

  • Пространство элементарных событий. Случайное событие как результат опыта. Классическое и аксиоматическое определение его вероятности. Основные формулы комбинаторики. Независимые и зависимые явления. Априорные вероятности гипотез. Формула Байеса.

    презентация, добавлен 29.09.2017

  • Определение вероятности по формулам Бернулли и Байеса. Проведение исследования интегрального закона распределения. Вычисление математического ожидания, дисперсии и среднеквадратического отклонения. Особенность построения статистического разделения.

    контрольная работа, добавлен 24.05.2016

  • События, основные распределения в теории вероятностей. Операции над событиями. Формула полной вероятности. Формула Бейеса и Бернулли, повторение испытаний. Случайные величины, закон распределения дискретной случайной величины, биноминальное распределение.

    курсовая работа, добавлен 21.11.2012

  • Вероятность наступления события в каждом из независимых испытаний. Определение математического ожидания, дисперсии, среднего квадратического отклонения дискретной случайной величины по закону её распределения. Вероятность абсолютной величины отклонения.

    задача, добавлен 17.01.2015

  • Порядок расчета вероятности наступления того или иного события. Составление и исследование функция распределения. Вероятность попадания случайной величины в заданный интервал. Проведение расчетов полной вероятности события, анализ полученных результатов.

    контрольная работа, добавлен 30.10.2012

  • Расчет количества невозвратов кредитов и квадратичного отклонения. Дисперсия и среднее квадратичное отклонение случайной величины. Построение гистограммы частот по распределению выборки. Проверка гипотезы о числовом значении математического ожидания.

    контрольная работа, добавлен 25.05.2014

  • Рассмотрение расшифровки урновой схемы. Особенности определения геометрической вероятности. Исследование принципов применения формулы Бернулли в теории вероятности. Характеристика предельных значений вероятностей событий, интегральной теоремы Лапласа.

    контрольная работа, добавлен 26.05.2015

  • Построение графиков эмпирической функции распределения и полигона частот исследуемой случайной величины. Вычисление несмещенных оценок математического ожидания и дисперсии. Гипотеза о законе распределения генеральной совокупности с уровнем значимости.

    задача, добавлен 24.12.2014

  • Понятие и структура, а также анализ примера вычисления ковариации. Ее классификация и разновидности, сравнительная характеристика: простая и выборочная. Альтернативное выражение и свойства, математическое обоснование. Признаки выборочной дисперсии.

    презентация, добавлен 20.01.2015

  • Определение необходимого объема выборки и оценка результатов наблюдения. Формулы для необходимого объем выборки для некоторых способов формирования совокупности. Вывод о возможности распространения результатов и особенности способа коэффициентов.

    лекция, добавлен 23.02.2014

  • Формулы комбинаторики и вероятность. Классическое определение вероятности. Непрерывные и дискретные случайные величины. Закон распределения случайных дискретных величин, их числовые характеристики. Статистические методы обработки экспериментальных данных.

    учебное пособие, добавлен 29.09.2017

  • Операции над событиями, элементы комбинаторики. Классический геометрический и статистический метод вычисления вероятностей. Формула полной вероятности и независимые испытания. Формула Байеса и Пуассона. Локальная и интегральная теорема Муавра-Лапласа.

    дипломная работа, добавлен 27.09.2012

  • Математические подходы к определению вероятности, ее роль в науке. Классический подход к теории вероятности, понятие равновозможности. Область применения геометрической вероятности. Доказательства и примеры теорем сложения и умножения вероятностей.

    реферат, добавлен 15.06.2010

  • Классическое определение вероятности, вычисление относительной частоты, её свойства. Дискретные и непрерывные случайные величины, биноминальное распределение, задачи и функции дисперсии. Формулы Байеса и Бернулли, интегральная теорема Муавра-Лапласа.

    курс лекций, добавлен 29.09.2014

  • Формула полной вероятности. Математическое ожидание, среднеквадратическое отклонение и дисперсия. Дискретная случайная величина. Интегральная функция распределения F(x). Квантили Х для нормального стандартного распределения по указанным вероятностям.

    контрольная работа, добавлен 10.12.2013

  • Понятие и примеры случайного события. Правила сложения и умножения в комбинаторике. Формулы вычисления вероятностей. Локальная и интегральная теоремы Муавра–Лапласа. Классы функций распределения. Непрерывные случайные величины. Закон больших чисел.

    краткое изложение, добавлен 21.03.2018

  • Вероятность события. Комбинаторика. Правила сложения и умножения вероятностей. Зависимые и независимые события. Формулы полной вероятности и Байеса. Случайные величины и законы их распределения. Непрерывные случайные величины и законы их распределения.

    курсовая работа, добавлен 19.10.2014

  • Понятие теории вероятностей, ее предмет. Возможность применения методов теории вероятностей к изучению статистических закономерностей. Математическое ожидание и дисперсия. Проявление предельных теорем при формальном изложении теории вероятностей.

    контрольная работа, добавлен 01.08.2017

Работы в архивах красиво оформлены согласно требованиям ВУЗов и содержат рисунки, диаграммы, формулы и т.д.
PPT, PPTX и PDF-файлы представлены только в архивах.
Рекомендуем скачать работу и оценить ее, кликнув по соответствующей звездочке.