Решение игр в математике
Теория игр как раздел математики, предметом которого является изучение математических моделей принятия оптимальных решений в условиях конфликта, ее основные понятия и утверждения. Методы решения игры: Брауна-Робинсона, монотонный итеративный алгоритм.
Подобные документы
- 1. Теория игр
Изучение формальных моделей принятия оптимальных решений в условиях конфликта. Конкретизация объектов конфликта и связей между ними в теории игр. Рассмотрение примеров бескоалиционной игры. Антагонистические и позиционные игры в современной теории игр.
реферат, добавлен 22.06.2016 Многократное фиктивное разыгрывание игры, когда одна итерация называется партией - сущность метода Брауна-Робинсона. Теорема, которая подтверждает сходимость алгоритма. Формулы, применяющиеся для определения значения итеративных последовательностей.
статья, добавлен 25.01.2022- 3. Теория игр
Определение особенностей изучения формальных моделей принятия оптимальных решений в условиях конфликта. Характеристика распределения свойств кооперативной теории игр. Выявление последовательности ведения антагонистических и позиционных игр в математике.
реферат, добавлен 02.12.2015 Теория игр как раздел прикладной математики, исследующий модели принятия решений в условиях несовпадения интересов сторон. Конфликтно управляемые системы с иерархической структурой в экономике России. Пример иерархической игры для расчетов выигрыша.
статья, добавлен 23.01.2018Теория игр - раздел математики, изучающий конфликтные ситуации на основе их математических моделей. Оптимальная стратегия для каждого игрока. Признаки классификации игры. Решение матричных игр в чистых и смешанных стратегиях. Основная теорема теории игр.
контрольная работа, добавлен 24.10.2014Теория игр как теория математических моделей принятия решений в условиях столкновения, когда игрок располагает информацией о множестве возможных ситуаций. Понятие и отличительные особенности динамической игры, составление и структура его дерева.
контрольная работа, добавлен 10.04.2014Классификация проблем принятия решений. Примеры аналоговых, физических и математических моделей. Принятие решений в условиях определенности. Графический метод решения задач линейного программирования, многоугольник решений, максимум целевой функции.
лекция, добавлен 23.08.2016Понятие теории игр как теории математических моделей принятия решений в условиях неопределенности, столкновения, конфликтных ситуациях. Неформальное описание игр и некоторые примеры: игры двух лиц с нулевой суммой, с седловой точкой. Смешанные стратегии.
курсовая работа, добавлен 21.10.2013Матричные антагонистические игры, схема принятия решений. Основная теорема теории матричных игр (по Дж. фон Нейману). Теорема о принципе максимина. Игры с нулевой суммой в чистых стратегиях. Вычисление оптимальных стратегий на примере решения задач.
курсовая работа, добавлен 28.02.2016Определение понятий "планирование", "прогнозирование". Виды неопределенностей, этапы в процессе планирования. Основные методы принятия решений. Задачи оптимизации при принятии решений. Этапы и цель разработки моделей линейного программирования.
презентация, добавлен 04.09.2016Краткое описание антагонистической игры. Теория и методы принятия решений. Концепция расчета по методу анализа иерархий. Особенность обработки матриц парных сравнений. Решение задачи линейного программирования. Учение сложности и преобразование Фурье.
методичка, добавлен 21.04.2016Описание модели выбора решений из множества альтернатив, в результате которого получается их подмножество или несколько, основанных на использовании байесовского подхода, на базе понятия функции защищенности, как оценки последствий принятия решения.
статья, добавлен 20.05.2017Теория и основные методы формализации знаний прикладного характера, формальное решение качественных задач в математике. Изучение сущности концепции логического программирования. Математические задачи на нахождение решений известными формальными методами.
статья, добавлен 04.03.2021Теория графов как область дискретной математики с геометрическим подходом к изучению объектов. Решение математических развлекательных задач и головоломок. Эйлеров путь графа. Краткие пути решения. Задача коммивояжера - одна из задач теории комбинаторики.
реферат, добавлен 13.01.2012Алгоритм получения оптимального решения игры, не имеющей седловой точки, при помощи метода чередования чистых стратегий. Геометрическая интерпретация игры 2х2. Порядок и особенности определения оптимальных стратегий игроков геометрическим методом.
реферат, добавлен 12.07.2015Решение игры с природой по критериям Гурвица, Лапласа, Сэвиджа и Вальда. Использование метода Брауна и симплекс-метода для определения оптимальной стратегии игрока и максимального значения выигрыша. Расчет цены игры, ее проверка на наличие седловой точки.
контрольная работа, добавлен 03.05.2013Возможности применения производной при решении задач на оптимизацию в школьном курсе математики. Формулировка и численные методы решения задач одномерной оптимизации по заданным алгоритмам. Разработка модели факультативного урока по математике.
курсовая работа, добавлен 26.10.2010- 18. Теория автоматов
Раздел дискретной математики, изучающий абстрактные автоматы: вычислительные машины, представленные в виде математических моделей и задачи, которые они могут решать. Работа распознавателя. Функциональная схема абстрактного автомата, порядок работы с ним.
реферат, добавлен 26.11.2014 Знакомство с особенностями метода полного исключения неизвестных. Анализ этапов постройки двойственной задачи. Общая характеристика методов оптимальных решений. Способы нахождения оптимального плана двойственной задачи из графического решения прямой.
контрольная работа, добавлен 07.10.2013Изучение истории математики как учебного предмета. Формирование умений по построению логических доказательств и математических моделей как общие направления обучению математике в школе. Особенности теоретической и прикладной математики в школьном курсе.
статья, добавлен 05.07.2013Составление математических моделей статики и динамики объектов с сосредоточенными и распределенными координатами. Исследование алгоритмов генерации псевдослучайных процессов для целей имитационного моделирования. Конечномерные задачи оптимизации.
учебное пособие, добавлен 28.11.2013Поиски оптимальных решений. Математические основы оптимизации вариационное исчисление и численные методы. Практическое использование математических методов оптимизации. Решение задачи графическим методом, с помощью Excel, классическим симплекс методом.
курсовая работа, добавлен 06.11.2012Основные характеристики задач оптимизации, выбора и принятия решений. Аналитические методы построения множества Парето. Методы определения весовых коэффициентов. Обработка результатов экспертных оценок. Методы замены векторного критерия скалярным.
учебное пособие, добавлен 12.05.2018- 24. Теория графов
Основные понятия теории графов. Алгоритм построения эйлерового пути. Теория графов как область дискретной математики, особенностью которой является геометрический подход к изучению объектов. Задача коммивояжера как одна из задач теории комбинаторики.
реферат, добавлен 18.03.2010 Изучение закономерностей выбора путей решения задач. Требования к тестам, оценка их способности служить цели измерения, методы повышения валидности. Значение интуиции, знаний и опыта при достижении результата. Установление готовности к производству работ.
презентация, добавлен 06.03.2022