Моделирование нейронных сетей в MatLab
Рассмотрение средств и методов MatLab и пакета Simulink для моделирования и исследования нейронных сетей. Применение нейронных сетей для аппроксимации функций. Работа с нейронной сетью в командном режиме. Применение GUI-интерфейса пакета нейронных сетей.
Подобные документы
Основные виды и типы нейронных сетей. Области применения нейронных сетей. Характеристика искусственной нейронной сети Gamma AI. Анализ описания алгоритма работы в нейросети гамма. Определение нейронной сети для создания озвучки из текста Narakeet.
контрольная работа, добавлен 18.06.2024Рассмотрение вопросов, связанных с решением задачи построения и обработки когнитивных структур на основе использования нейронных сетей. Организация специализированной модели, настроенной на решения поставленной задачи "Нейросетевая когнитивная модель".
статья, добавлен 23.08.2020Описание существующих видов нейронных сетей. Выявление их достоинств и недостатков. Основные возможности программного продукта Matlab. Моделирование и обучение нейронной сети на основе созданных дескрипторов для каждого символа английского алфавита.
дипломная работа, добавлен 07.08.2018Эволюция поколений символообрабатывающих ЭВМ. Этапы развитие искусственных нейронных сетей. Сравнение машины фон Неймана с биологической нейронной системой. Нейроинформатика как способ решения различных задач с помощью искусственных нейронных сетей.
лекция, добавлен 06.09.2017Определение алгоритмов (оптимизационных методов) обучения искусственных нейронных сетей. Характеристика их видов: метод случайного поиска и стохастического градиентного спуска. Оценка программной реализации адаптивного метода обучения нейронной сети.
статья, добавлен 29.05.2017- 31. Нейрокомпьютеры
Понятие и принцип работы нейронных сетей. Типы нейронов и их функциональные особенности: биологические и искусственные. Базовые архитектуры нейронных сетей, их структура и элементы. Этапы программирования средств аппаратной поддержки нейровычислений.
контрольная работа, добавлен 14.10.2013 Методики компонентного проектирования нейронных сетей для обработки баз знаний, представленных семантическими сетями. Использование унифицированной модели нейронной сети и компонентном подходе к работе с нейронными сетями; библиотека НС-компонент.
статья, добавлен 06.03.2019Основные теории искусственных нейронных сетей. Место нейронных сетей в эволюции интеллектуальных систем управления. Преимущества применения нейроинформационных технологий при решении многих как нетрадиционных, так и традиционных задач управления и связи.
книга, добавлен 09.09.2012Исследование применения классификации и анализа объектов на основе нейронных сетей в задачах распознавания объектов в видеопотоке. Разработка и реализация алгоритма обучения нейронных сетей для реализации механизмов классификации объектов в видеопотоке.
дипломная работа, добавлен 10.12.2019- 35. Нейронные сети
История развития нейронных сетей. Строение биологической нейронной сети. Искусственный нейрон. Общие положения и виды обучения нейронных сетей. Архитектура. Сети прямого распространения сигнала. Рекуррентные сети. Области практического применения.
контрольная работа, добавлен 18.02.2018 Модели нейронных сетей относятся к интеллектуальным системам, они позволяют улучшить результаты благодаря самообучению. Рассмотрены исследования по моделированию прогнозов котировок ценных бумаг. Нейронные сети обратного распространения. Описание модели.
статья, добавлен 17.03.2021Описание базовых задач для нейронных сетей и исторически первых методов настройки сетей для их решения: классификация (персептрон Розенблатта); ассоциативная память (сети Хопфилда); восстановление пробелов в данных; кластер-анализ (сети Кохонена).
курсовая работа, добавлен 04.04.2009MATLAB как пакет прикладных программ для решения задач технических вычислений и одноимённый язык программирования, используемый в этом пакете. Создание нейронной сети в графическом интерфейсе. Экспортирование созданной нейронной сети в рабочую область.
контрольная работа, добавлен 30.05.2016Показано, что главное отличие нейронных сетей от ЭВМ в том, что они не программируются, а обучаются. Схема нейронной сети с прямой передачей сигнала. Рекуррентные нейронные сети как наиболее сложный вид нейронных сетей, в которых имеется обратная связь.
статья, добавлен 26.04.2019- 40. Нейронные сети
Нейронные сети: особенности, варианты использования и преимущества. Диагностика и прогнозирование экономических объектов. Применение нейронных сетей в рыночной экономике. Варианты применения искусственных нейронных сетей в задачах бизнес-прогнозирования.
реферат, добавлен 15.03.2009 Характеристика многослойной структуры нейронных сетей. Алгоритм обучения однослойного перцептрона. Построение полного алгоритма нейронных сетей с помощью процедуры обратного распространения. Программирование и применение методов Randomize и Propagate.
реферат, добавлен 20.03.2009Применение искусственных нейронных сетей в задаче прогнозирования оставшегося времени безаварийной работы. Предварительная обработка телеметрических данных. Использование аппроксимации обобщенной функции Веибулла. Уменьшение влияния шумовых факторов.
статья, добавлен 29.06.2017Архитектура искусственных нейронных сетей, особенности их обучения с учителем и без него. Правило коррекции по ошибке. Обучение методом соревнования. Основные принципы генетического алгоритма. Анализ применения нейронных сетей для синтеза регуляторов.
дипломная работа, добавлен 23.02.2015Свойства и структура нейронных сетей, их применение в сфере компьютерных технологий. Поиск путей увеличения скорости протекания процесса обучения. Анализ зависимость ошибки обучения от сложности структуры персептрона и количества нейронов в скрытом слое.
статья, добавлен 03.02.2021Биологический прототип и искусственный нейрон. Распознавание цифр с помощью сетей Хопфилда. Алгоритм функционирования сети. Классификация входного образа. Развитие искусственных нейронных сетей. Исследование возможностей нейронных сетей и их развития.
курсовая работа, добавлен 25.01.2014Характеристики нейронных многослойных сетей. Математические эквиваленты нейрофизиологических понятий параметрической и топологической пластичности. Связь степени параметрической пластичности нейронной сети с числом независимо распознаваемых образов.
статья, добавлен 17.01.2018Разработка методики для автоматической сегментации спутниковых снимков по нескольким классам (здания, реки, дороги) на базе сверточных нейронных сетей. Особенности подготовки изображения для тренировки нейронной сети. Оценка эффективности нейронных сетей.
статья, добавлен 11.01.2018Проблема распознавания кривых линий на сложном фоне шумовых точек и близких соседних кривых. Главные требования к обработке в современных экспериментах. Понятие и особенности эластичных нейронных сетей. Робастные методы оценки параметров и их применение.
статья, добавлен 08.02.2013Нейронные сети как аппаратные или программные средства, моделирующие работу человеческого мозга. Анализ проблем создания компьютерных систем речевого общения. Рассмотрение особенностей применения нейронных сетей для решения задач распознавания речи.
доклад, добавлен 12.12.2012Рассмотрение проблемы классификации сообществ в социальной сети. Применение рекуррентных и сверточных нейронных сетей для классификации групп пользователей по степени радикальности. Методы предварительной обработки данных для построения классификаторов.
статья, добавлен 21.05.2021