Математика XIX века

Предыстория математической логики. Алгебраическая теория чисел. Социальная и антропометрическая статистика. Вклад К.Ф. Гаусса в теорию вероятностей. Исследования С.Д. Пуассона и О. Коши. П.Г. Лежен-Дирихле и теорема об арифметических прогрессиях.

Подобные документы

  • Особенности метода математической индукции, его широкое применение при доказательстве теорем, тождеств, неравенств, к суммированию рядов, геометрическим задачам и задачам на делимость натуральных чисел. Примеры применения метода математической индукции.

    реферат, добавлен 15.12.2011

  • История возникновения математической логики. Основное содержание, формулы, элементы, символы. Таблицы истинности, логические функции, основные логические операции. Законы логики и упрощение логических выражений. Решения задач по математической логике.

    реферат, добавлен 06.06.2012

  • Теория вероятностей как математический аппарат для изучения закономерностей случайных событий и связанных с ними случайных величин. Использование вероятностных и статистических методов в современной физике, технике, экономке, биологии и медицине.

    курсовая работа, добавлен 11.06.2014

  • Основна теорема арифметики. Подільність чисел на множині цілих чисел та його властивості. Застосування ланцюгових дробів. Канонічний розклад числа та діофантові рівняння. Системи лінійних конгруенцій, методи розв’язання. Китайська теорема про лишки.

    шпаргалка, добавлен 07.06.2019

  • Операции над событиями. Частость наступления события. Аксиоматика теории вероятности. Построение вероятностного пространства. Классическое определение вероятности. Обоснование формулы условной вероятности в общем случае. Формула сложения вероятностей.

    реферат, добавлен 27.11.2015

  • Теория вероятностей как один из разделов математики. Типы события и действия над ними. Случайное событие, его виды. Применение операций сложения и умножения при определении вероятностей. Наглядная геометрическая интерпретация этих понятий, дерево исходов.

    реферат, добавлен 10.11.2014

  • Коши Луи (1789-1857 гг.) - знаменитый французский математик. Изучение теории дифференциальных уравнений. Комплексные пространства со скалярным произведением. Определение предела математической последовательности. Множества в Евклидовом Пространстве.

    реферат, добавлен 06.10.2017

  • Математика как наука о количественных отношениях и пространственных формах действительного мира. Ее роль в современном обществе и этапы развития. Основы построения математической теории. Вклад Ньютона в создание физико-математического естествознания.

    реферат, добавлен 03.06.2010

  • Совокупность правил наименования и изображения чисел с помощью набора символов. Способы записи чисел в виде, удобном для прочтения и арифметических операций. Первые понятия математики. Римская нумерация как примером непозиционной системы счисления.

    презентация, добавлен 05.12.2013

  • Вклад робіт Ферма на розвитку нових галузей в математиці: математичного аналізу, аналітичної геометрії, теорії вірогідності. Поява теорії з'єднань - комбінаторики. Велика теорема Ферма, історія її доведення. Спроби вирішення цієї математичної проблеми.

    реферат, добавлен 03.05.2022

  • История комплексных чисел. Особенности решения многих задач физики и техники при помощи комплексных чисел. Достоинство комплексного метода. Алгебраическая и тригонометрическая форма комплексного импеданса. Механические приложения комплексных чисел.

    статья, добавлен 03.09.2011

  • Использование теоремы Муавра Лапласа при решении задачи по теории вероятности. Нахождение закона распределения, математического ожидания и дисперсии. Построение графика функции распределения, полигона относительных частот и гистограммы накопленных частот.

    задача, добавлен 24.08.2015

  • Изучение истории формирования и развития математических учений в странах Азии и Востока. Появление арабской нумерации. Открытие арифметических действий, дробей и задач. Алгебра и квадратные уравнения, геометрические построения и теория чисел (отношений).

    реферат, добавлен 18.11.2014

  • Классическое определение вероятности. Условная вероятность и теорема умножения вероятностей. Формула Бейеса и Бернулли. Последовательные испытания и дискретные случайные величины. Нормальное распределение, дисперсия и среднее квадратическое отклонение.

    контрольная работа, добавлен 25.01.2015

  • Краткие биографические данные о жизни Фридриха Гаусса – немецкого математика, астронома и физика. Первые исследования метода решения систем линейных алгебраических уравнений. Понятие расширенной матрицей системы. Элементарные преобразования системы.

    курсовая работа, добавлен 05.12.2013

  • Определение дифференциального уравнения (ДУ) и понятие его порядка. Интегрирование ДУ как операция нахождения его решения. Теорема существования и единственности решения дифференциального уравнения (теорема Коши). Геометрический смысл ДУ и его решений.

    лекция, добавлен 06.04.2018

  • Теоремы сложения и умножения вероятностей. Использование формулы полной вероятности и формулы Байеса. Локальная и интегральная теоремы Лапласа. Составление ряда распределения. Вычисление математического ожидания и среднего квадратического отклонения.

    контрольная работа, добавлен 06.11.2012

  • Контрольные задачи типового расчета по теории вероятностей и по математической статистике. Схема соединения элементов, образующих цепь с одним входом и одним выходом. "Прямое" сложение и умножение вероятностей. Математическое ожидание и дисперсия.

    контрольная работа, добавлен 17.11.2014

  • Теория вероятности, её характеристика. Математическая статистика, сущность эмпирической функции распределения, построение графика. Нахождение доверительного интервала, выборочной дисперсии и её несмещённой оценки. Закон распределения случайной величины.

    курсовая работа, добавлен 22.09.2014

  • Понятие и примеры случайного события. Правила сложения и умножения в комбинаторике. Формулы вычисления вероятностей. Локальная и интегральная теоремы Муавра–Лапласа. Классы функций распределения. Непрерывные случайные величины. Закон больших чисел.

    краткое изложение, добавлен 21.03.2018

  • Классическое определение вероятностей. Искомая вероятность указанного события. Противоположные и несовместные события. Теорема умножения независимых событий. Повторные независимые испытания. Использование интегральной предельной теоремы Лапласа.

    контрольная работа, добавлен 20.01.2013

  • Системы счисления Вавилонии и Египта. Феноменальное развитие математической науки в Древней Греции. Достижения великих математиков древнего мира. Усовершенствование математики индийцами и арабами, ее упадок в средние века. Современная математика.

    реферат, добавлен 04.09.2011

  • Особенность обоснования значимости условий Колмогорова в контексте приложений математической статистики и теории вероятностей. Изучение классификации объяснений Шейфера и Вовка по степени обоснованности. Использование конечной частотной интерпретации.

    статья, добавлен 14.05.2017

  • Понятие теории вероятностей, ее предмет. Возможность применения методов теории вероятностей к изучению статистических закономерностей. Математическое ожидание и дисперсия. Проявление предельных теорем при формальном изложении теории вероятностей.

    контрольная работа, добавлен 01.08.2017

  • Изучение метода математической индукции. Понятия тождества, неравенства и делимости. Комбинаторика как наука, изучающая множества, размещение и перечисление их элементов. Алгоритм Евклида и основная теорема арифметики. Числа, дроби и системы счисления.

    учебное пособие, добавлен 28.12.2013

Работы в архивах красиво оформлены согласно требованиям ВУЗов и содержат рисунки, диаграммы, формулы и т.д.
PPT, PPTX и PDF-файлы представлены только в архивах.
Рекомендуем скачать работу и оценить ее, кликнув по соответствующей звездочке.