Основные комбинаторные принципы и понятия в примерах

Принципы сложения и умножения. Общее понятие о подмножествам. Принцип включения и исключения. Размещения с повторениями, сочетания. Треугольник Паскаля. Бином Ньютона и полиноминальная формула (комбинаторный смысл). Главные свойства перестановок.

Подобные документы

  • Основные комбинаторные формулы. Решение задач комбинаторики средствами MS Excel. Использование встроенных функций MS Excel для вычисления перестановок, сочетаний, размещений. Основные понятия и правила комбинаторики. Свойства биномиальных коэффициентов.

    методичка, добавлен 17.02.2014

  • Обзор основных комбинаторных объектов. Ключевые понятия и элементы теории вероятностей. Теоремы сложения и умножения вероятностей. Классическая формула вероятности. Формула полной вероятности Байеса. Асимптотические формулы, теорема Муавра-Лапласа.

    презентация, добавлен 10.01.2017

  • Определение основных понятий числовых множеств. Граничная точка и граница множества, соединения и бином Ньютона, а также треугольник Паскаля. Характеристика комплексных чисел и операции над ними. Формула Муавра и извлечение корня из комплексного числа.

    реферат, добавлен 17.01.2011

  • Понятие вероятности и зарождение науки о закономерности случайных явлений. Достоверное, невозможное и случайное событие как первичное понятие теории вероятностей. Комбинаторные конфигурации, используемые для формулировки и решения комбинаторных задач.

    реферат, добавлен 06.01.2015

  • Математическое описание треугольника паскаля как бесконечной таблицы биноминальных коэффициентов, имеющей треугольную форму. Принцип соответствия треугольника Хуэя в китайском средневековом манускрипте. Блоки макроуровня и примеру треугольников Паскаля.

    статья, добавлен 29.03.2019

  • Работы выдающегося математика, физика, философа и писателя Паскаля. Свойства и устройство треугольника Паскаля. Изображение равнобедренного треугольника точками. Построение треугольных чисел и их обобщения на случай пространств всех размерностей.

    презентация, добавлен 23.01.2012

  • Биография и основные открытия Блеза Паскаля. Изучение роли понятия треугольника Паскаля при решении задач, его свойств, истории и построения. Применение разнообразных методов, рациональных способов решения задач с применением треугольника Паскаля.

    творческая работа, добавлен 06.02.2017

  • Изучение принципов и методов решения комбинаторных задач. Операции с конечными множествами, состоящими из элементов любой природы и их подмножества. Соединения перестановки, замещения, сочетания. Факториал и его свойства. Комбинаторный закон умножения.

    методичка, добавлен 22.09.2013

  • Операции над множествами. Декартово произведение множеств. Бинарные отношения, функции и порядок. Область значений бинарного отношения. Класс эквивалентности элемента. Сочетания, размещения и перестановки элементов. Бином Ньютона, теория алгоритмов.

    реферат, добавлен 19.01.2012

  • Основы теории вероятностей, комбинаторики и статистики. Правила суммы и произведения. Непересекающиеся конечные множества. Арифметический треугольник паскаля и бином ньютона. Интервальная таблица частот. Методика преподавания элементов стохастики.

    учебное пособие, добавлен 30.04.2014

  • История зарождения и развития комбинаторики, ее применение в теории вероятностей, криптографии, терминологии и математике. Биномиальные коэффициенты ("треугольник Паскаля"). Примеры комбинаторных конфигураций и задач. Правила сложения и умножения.

    реферат, добавлен 12.11.2016

  • Изучение понятия дифференциального уравнения. Комбинаций производных функций и независимые переменные. Определения вида постоянных и неопределенных функций. Дифференциальное исчисление, созданное Лейбницем и Ньютоном (1642—1727). Формула бином Ньютона.

    презентация, добавлен 26.10.2013

  • Применение бинома Ньютона при доказательстве теоремы Ферма, в теории бесконечных рядов и выводе задачи Ньютона-Лейбница. Использование биномиальных коэффициентов при решении заданий. Суть формул сжатого умножения для квадрата и куба суммы двух слагаемых.

    конспект урока, добавлен 03.02.2018

  • Понятие и характеристика треугольника Паскаля, история его открытия, специфика и предназначение биномиальных тождеств. Описание, отличительные черты методов включений и исключений. Использование производящих функций, сущность рекуррентных соотношений.

    реферат, добавлен 30.03.2016

  • Возникновение теории вероятностей как науки. Аксиоматический подход и элементарные понятия теории множеств. Операции сложения и умножения событий. Решение типовой задачи на формулу Байеса. Формула полной вероятности в обеспечении качества продукции.

    контрольная работа, добавлен 25.05.2015

  • Случайное событие, его частота и вероятность. Теоремы сложения и умножения вероятностей. Формула полной вероятности (формула Бейеса). Дискретные случайные величины. Математическое ожидание и его свойства. Дисперсия непрерывной случайной величины.

    методичка, добавлен 05.09.2012

  • Характеристика основных правил комбинаторики. Исследование теоремы о включениях и исключениях. Особенность комбинаторного смысла числа перестановок. Анализ порядка выбора монет. Упрощение вычислительных действий как главная цель изучения бинома Ньютона.

    лекция, добавлен 25.10.2019

  • Геометрическое понятие "сферический треугольник" и его свойства. Неевклидова и евклидова геометрии. Аксиома параллельности прямых. Некоторые факты из геометрии Лобачевского. Основные понятия сферической геометрии. Равнобедренный сферический треугольник.

    творческая работа, добавлен 03.05.2019

  • Теоретические аспекты понятия матрицы, правила основных операций над н6ими (сложения, умножения, умножения на число). Определитель в теории систем линейных уравнений, его вычисление и основные свойства. Решение систем линейных уравнений методом Крамера.

    реферат, добавлен 30.10.2010

  • Основная теория алгебры. Корни многочлена и его производной. Свойства неприводимых многочленов. Алгоритмы разложения на неприводимые множители. Формула обращения Мёбиуса. Теоремы дополнения, сложения аргументов и умножения. Арифметические свойства чисел.

    книга, добавлен 28.12.2013

  • Комбинаторика - древнейшая и ключевая ветвь математики, изучающая дискретные объекты, множества и комбинации из заданного числа элементов. Перебор и построение дерева возможных вариантов. Комбинаторное правило умножения, примеры конфигураций и задач.

    презентация, добавлен 09.12.2014

  • Применение законов сложения и умножения и вычисления результата примеров. Доказывание истинности равенства методом математической индукции. Теоретико-множественное обоснование вычитания и умножения. Натуральный смысл числа в результате измерения.

    контрольная работа, добавлен 21.05.2014

  • Теория вероятности и математическая статистика. Основные категории: событие, вероятность, случайность. Теоремы сложения и умножения. Вероятность гипотез, формула Байеса. Независимые события. Биномиальное распределение. Редкие события, формула Пуассона.

    методичка, добавлен 21.10.2010

  • Механизм и основные закономерности определения отношения порядка на множестве комбинаторных объектов. Принципы и этапы генерации перестановок, сочетаний и размещений без повторений, подмножеств, разбиений числа на слагаемые с использованием массивов.

    презентация, добавлен 21.09.2017

  • Сущность матрицы как совокупности m•n чисел, расположенных в виде прямоугольной таблицы из m строк и n столбцов. Главные свойства элементов, их порядок записи. Характеристика основных видов: треугольная, квадратная. Порядок сложения и умножения матриц.

    курсовая работа, добавлен 03.12.2013

Работы в архивах красиво оформлены согласно требованиям ВУЗов и содержат рисунки, диаграммы, формулы и т.д.
PPT, PPTX и PDF-файлы представлены только в архивах.
Рекомендуем скачать работу и оценить ее, кликнув по соответствующей звездочке.