Краевая задача для смешанного уравнения с перпендикулярными линиями изменения типа
Исследование нелокальной краевой задачи для смешанного параболо-гиперболического уравнения второго порядка с негладкими условиями сопряжения. Доказательство существования решения данной задачи. Решение интегрального уравнения Фредгольма второго рода.
Подобные документы
Методика определения напряженности осевого импульсного магнитного поля, проникшего в движущуюся проводящую оболочку, при помощи дифференциального уравнения первого порядка. Решение краевой задачи для уравнения проникновения поля в частных производных.
статья, добавлен 29.07.2016Доказательство существования регулярного решения уравнения синус-Гордона на всей плоскости. Аналитическое решение уравнения и сетевой угол чебышевской сети на псевдосфере. Геометрическая интерпретация решений уравнения, понятие асимптотической полосы.
контрольная работа, добавлен 08.12.2013Исследование на сходимость числового ряда. Разложение в окрестности определенной точки в степенной ряд функции. Решение задачи Коши для уравнения. Определение радиуса и интервала сходимости степенного ряда и общего решения дифференциального уравнения.
контрольная работа, добавлен 12.01.2013Поиск функции в заданной области, удовлетворяющей определенным условиям - аналогам условия Франкля и Бицадзе-Самарского. Единственность решения задачи. Решение сингулярного интегрального уравнения Трикоми. Применение метода регуляризации Карлемана-Векуа.
реферат, добавлен 15.06.2015Исчисление общего интеграла дифференциального уравнения первого порядка и методом вариации постоянных (методом Лагранжа). Частное решение однородного линейного дифференциального уравнения второго порядка. Решение системы дифференциальных уравнений.
контрольная работа, добавлен 13.08.2014Определение обыкновенного дифференциального уравнения. Приемы решения уравнений с разделёнными и разделяющимися переменными, задача Коша. Методы интегрирования Эйлера, Рунге-Кутта, Адамса. Геометрический смысл дифференциального уравнения первого порядка.
курсовая работа, добавлен 26.12.2012Определение двустороннего усилия и обширной области теории упругости и механики разрушения. Решение краевой задачи для плоского упругого тела с внешними и внутренними концентраторами напряжений посредством применения сингулярного интегрального уравнения.
статья, добавлен 29.04.2017Исследование линейного дифференциального однородного уравнения второго порядка с произвольными коэффициентами с применением алгебраических преобразований. Изучение меры произвольности этих коэффициентов и методов безусловного решения таких уравнений.
творческая работа, добавлен 24.03.2011Решение краевых задач для одномерных дифференциальных уравнений дробного порядка методом Фурье. Дифференциальное уравнение адвекции-диффузии. Собственные функции, функция Миттаг-Леффлера. Применение задачи в теории течения жидкости во фрактальной среде.
статья, добавлен 21.06.2018Неопределенные, определенные и несобственные интегралы. Общее решение линейного дифференциального уравнения. Нахождение площади фигуры, ограниченной линиями. Частное решение дифференциального уравнения, удовлетворяющего заданным начальным условиям.
контрольная работа, добавлен 09.12.2012Численный метод решения интегрального уравнения с ядром, имеющим особенности первого порядка по обеим переменным. Аппроксимация кусочно-линейными функциями. Расчет коэффициентов методом коллокации. Вычисление сингулярных интегралов от базисных функций.
статья, добавлен 13.05.2017- 87. Линейная алгебра
Определение внутреннего угла, уравнения высоты, уравнения медианы, точки пересечения высот треугольника. Построение кривых второго порядка. Решение системы алгебраических уравнений по формулам Крамера и методом Гаусса. Использование модели Леонтьева.
контрольная работа, добавлен 22.12.2019 Задача оптимальной фильтрации для сингулярно возмущенного уравнения Ланжевена. Выделение случаев, имеющих особенности при редукции задачи оценивания. Использование методов теории интегральных многообразий для понижения размерности данной задачи.
статья, добавлен 31.05.2013Показано, как можно сингулярную задачу, решаемую вариационным методом в весовом пространстве, заменить аппроксимирующей задачей, не имеющей сингулярности. Решение задачи о минимуме функционала. Краевая задача для сингулярного дифференциального уравнения.
статья, добавлен 01.02.2019Определение линейных дифференциальных уравнений. Теорема существования и единственности решения задачи Коши. Уравнения с разделяющимися переменными. Метод Лагранжа и Эйлера. Локальная и интегральная теоремы Лапласа. Формула полной вероятности Байеса.
шпаргалка, добавлен 02.02.2016Вид частного решения уравнения n-го порядка. Определение значений линейных комбинаций функции и ее производных. Нахождение решения ДУ n-го порядка, когда все n условий заданы в одной точке. Множество интегральных кривых, проходящих через одну точку.
презентация, добавлен 17.09.2013Определение порядка уравнения наибольшим порядком производной. Формулировка теоремы о структуре общего решения линейного уравнения 1-го порядка. Определитель Вронского как главный определитель системы уравнений. Преобразование решения по функции Эйлера.
лекция, добавлен 14.03.2014Вычисление приближенных решений обыкновенного дифференциального уравнения 1 порядка. Вектор решения по методам Эйлера и Рунге-Кутты. Расчет погрешности приближенных решений. Построение графиков, демонстрирующих методы решений ОДУ второго порядка.
контрольная работа, добавлен 05.12.2013Уравнение Шрёдингера с некоторыми фиксированными физическими величинами. Задача Коши для уравнения Шрёдингера после преобразования Фурье. Проверка доказательства теоремы о бесконечной гладкости решений уравнения Шрёдингера с начальными условиями.
курсовая работа, добавлен 05.03.2018Функция комплексного переменного. Примеры уравнений математической физики. Формулировка краевой задачи. Колебания бесконечной струны. Формула Даламбера решения задачи Коши для волнового уравнения. Уравнения теплопроводности. Математическая статистика.
практическая работа, добавлен 10.10.2023Описание метода конечных разностей на примере определения зависимости температуры от времени в различных точках стержня из теплопроводящего материала. Решение смешанной задачи для уравнения теплопроводности с заданными начальным и граничными условиями.
лабораторная работа, добавлен 27.04.2011Решение задачи на нахождение предела с применением правила Лопиталя. Составление уравнения касательной к графику функции. Исследование функции и построение ее графика. Пример вычисления определенного интеграла, а также решения дифференциальных уравнений.
контрольная работа, добавлен 01.03.2017Общая теория кривых второго порядка. Определение зависимости типа кривой от параметра с помощью инвариантов. Определение эксцентриситета, фокусов, директрис, асимптот данной кривой второго порядка. Построение и исследование поверхности второго порядка.
курсовая работа, добавлен 22.04.2011Теорема С.В. Ковалевской о существовании и единственности решения уравнения в частных производных. Доказательство положения об общем определении квазилинейного равенства. Способ построения задачи Коши с помощью геометрического смысла характеристик.
курсовая работа, добавлен 26.02.2014Определение для сингулярно возмущенного операторного уравнения Фредгольма последовательных итерационных, а также асимптотических приближений. Выбор нулевого приближения. Теорема о биортогонализации. Выбор частного решения неоднородного уравнения.
статья, добавлен 05.07.2013