Основы выпуклого анализа

Определение и примеры выпуклых множеств, гиперплоскости, нормального вектора. Рассмотрение операций, сохраняющих выпуклость. Понятие выпуклой функции. Установление необходимого и достаточного условий минимума гладких функций на выпуклых множествах.

Подобные документы

  • Изучение интегральных вычислений в курсе математического анализа. Определение риманового числа. Понятие непрерывной периодической функции. Анализ признаков сходимости ряда. Доказательство теорем о несобственном интеграле непрерывной периодической функции.

    курсовая работа, добавлен 02.10.2021

  • Изучение математических моделей объектов, процессов и зависимостей, решаемых дискретной математикой. Анализ элементов теории множеств. Понятие и применение математической логики. Определение алгебраических операций. Теория графического представления.

    учебное пособие, добавлен 19.12.2012

  • Изучение понятий операций конъюнкции (логического умножения) и дизъюнкции (логическое сложение) над предикатами, заданными на множествах. Рассмотрение их свойств и приведение примеров доказательств равенства и тождества с использованием кругов Эйлера.

    презентация, добавлен 05.01.2014

  • Элементы, из которых состоит множество. Примеры обозначений с помощью логической символики. Квантор всеобщности и существования. Свойства множеств. Операции логического сложения, умножения, разности. Окрестности точки х как особый вид множества.

    лекция, добавлен 29.09.2013

  • Анализ последовательности числа с общим членом, согласно формуле суммы бесконечно убывающей геометрической последовательности. Понятие функций одной переменной некоторых числовых множеств. Виды элементарных функций и их геометрическое содержание.

    лекция, добавлен 29.09.2013

  • Ознакомление с методами обозначения частной производной функции. Определение условий дифференцирования функции. Рассмотрение символики для обозначения частных производных. Исследование теоремы о частных производных. Анализ сущности смешанных производных.

    лекция, добавлен 13.04.2015

  • Сравнение бесконечно малых функций, их определение. Некоторые эквивалентные бесконечно малые функции при x>0. Раскрытие неопределенностей. Свойства функций, непрерывных на отрезке. Основные соотношения, их доказательство и примеры решений задач.

    презентация, добавлен 16.10.2014

  • Рассмотрение общих свойств функций. Изучение области определения и множества значений функции. Характеристика экстремальных свойств. Оценка отличий монотонных функций. Определение чётности, периодичности, обратимости функций в задачах с параметром.

    курсовая работа, добавлен 22.02.2019

  • Понятие, основные виды (скалярная, единичная, нулевая, транспонированная) и равенство матриц как множества чисел, образующих прямоугольную таблицу, определение вектора. Характеристика операций над матрицами в линейной алгебре. Свойства умножения матриц.

    лекция, добавлен 18.03.2016

  • Определение понятия вектора как геометрического объекта, его графическое изображение и обозначение. Особенности нулевого вектора. Коллинеарные, сонаправленные и противоположно направленные вектора, их особенности и изображение на графических иллюстрациях.

    шпаргалка, добавлен 26.05.2017

  • Теории мультипликативных функций, определения и свойства данных функций, методы их суммирования. Рассмотрение результатов суммирования известной функции Эйлера j(n) и Мебиуса. Теорема Мертенса. Определение средних значений функций натурального аргумента.

    дипломная работа, добавлен 29.10.2010

  • Изучение понятия и видов функций, под которыми понимают зависимость одной переменной величины от другой. График функции. Числовая, убывающая, возрастающая функция. Область определения. Непрерывная функция - функция без "скачков". Примеры четности функций.

    презентация, добавлен 16.11.2015

  • Определение понятия предела функции для любой бесконечно большой последовательности. Характеристика ограниченности функций и арифметических операций, при условии наличия пределов. Изучение свойств бесконечно малых и больших математических функций.

    лекция, добавлен 29.09.2013

  • Теория множеств с самопринадлежностью, свойства структурного изоморфизма при описании бесконечных самоподобных множеств. Анализ и описание свойств структурного изоморфизма, прикладная интерпретация этих свойств на предметной области формальных языков.

    статья, добавлен 26.04.2019

  • Исследование понятия дифференциала функции, его свойств и геометрического смысла. Изучение теоремы о связи бесконечно малых величин с пределами функций. Определение приращения и дифференциала независимой переменной. Примеры решения задач с производными.

    презентация, добавлен 21.09.2013

  • Определение вектора. Его коллинеарный и компланарный вид. Простейшие геометрические операции над векторами. Их линейная зависимость. Координатное представление скалярного и смешанного произведения слагаемых. Свойства направленного отрезка прямой в базисе.

    лекция, добавлен 23.12.2013

  • Понятие о симплекс-методе и способы нахождения базисного решения. Определение крайней точки выпуклого множества. Преобразование Гаусса-Жордана и его применение. Симплекс-метод с искусственным базисом (М-метод). Исследование функции f(х) на экстремум.

    презентация, добавлен 09.07.2015

  • Разработка новых методов аппроксимации широкого класса функций - локально липпшцевых функций, построение на их основе новых методов оптимизации негладких гладких функций, к которым неприменимы условия сходимости оптимизационных процессов высокого порядка.

    автореферат, добавлен 21.03.2015

  • Образование множеств и выполнение элементарных операций. Образование подстановки её степеней. Последовательные степени до получения тождественной подстановки. Малая конечная арифметика. Работа по правилу неповторяемости элементов в строках и столбцах.

    контрольная работа, добавлен 29.03.2017

  • Понятие функции, ее график, история развития. Великие математики и их труды: Лейбниц, Бернулли, Эйлер, Лобачевский. Примеры функций, которые рассматриваются в школе: линейная, тригонометрическая и пр. График гармонического колебания, свободного падения.

    презентация, добавлен 16.11.2015

  • Математическая формулировка комплексного метода Бокса. Понятие целевой функции. Основные разновидности целевых функций. Понятие системы граничных условий, разновидности систем граничных условий. Условная и безусловная оптимизация, области применения.

    контрольная работа, добавлен 02.03.2015

  • Определение понятия нелинейного программирования. Раскрытие специфики нелинейных программ и методов их решения. Изучение градиентных методов решения задач выпуклого программирования. Решение задач нелинейного программирования методом множителей Лагранжа.

    контрольная работа, добавлен 26.12.2011

  • Рассмотрение необходимого и достаточного условия сходимости. Характеристика матричной записи методов Якоби и Зейделя. Представление итерационного процесса в матричном виде. Анализ итерационных методов решения систем линейных алгебраических решений.

    презентация, добавлен 30.10.2013

  • Вычисление неопределенных и определенных интегралов, проверка результатов дифференцированием. Определение площади фигуры, ограниченной параболой и прямой. Дифференциальное исчисление функций нескольких переменных. Примеры решений системы уравнения.

    контрольная работа, добавлен 16.04.2012

  • Основные способы задания множеств. Анализ рефлексивных, симметричных и транзитивных бинарных отношений. Характеристика исследования ориентированных графов. Главные законы, определяющие свойства логических операций. Изучение элементарных булевых функций.

    презентация, добавлен 06.09.2017

Работы в архивах красиво оформлены согласно требованиям ВУЗов и содержат рисунки, диаграммы, формулы и т.д.
PPT, PPTX и PDF-файлы представлены только в архивах.
Рекомендуем скачать работу и оценить ее, кликнув по соответствующей звездочке.