Метод Ньютона
Общая характеристика метода Ньютона, знакомство с особенностями применения. Анализ способов записи формального представления по формуле Тейлора, основные проблемы. Рассмотрение процесса вычисления приближенного значения корня, использование выражений.
Подобные документы
Определение и условия существования определенного интеграла. Проведение исследования основных понятий и предложений теории пределов. Характеристика формулы Ньютона-Лейбница. Выражение остаточного члена теоремы Тейлора с помощью определенной величины.
курсовая работа, добавлен 17.12.2017- 77. Численные методы
Анализ особенностей ортогональных систем векторов. Знакомство с численными методами решения задач. Рассмотрение приемов ортогонализации столбцов матрицы. Характеристика способов применения методов ортогонализации к решению систем линейных уравнений.
курсовая работа, добавлен 13.07.2013 Математическое понятие корня n-ой степени. Расчет арифметического корня из числа. История возникновения квадратного корня и термина "радикал". Решение уравнений, используя график функции. Упрощение выражений с применением способа замены переменной.
конспект урока, добавлен 28.10.2015Понятие определенного интеграла, применение формулы Ньютона-Лейбница при его вычислении. Использование метода замены переменной. Определение пределов интегрирования, правила перестановки. Свойства аддитивности и линейности. Классы интегрируемых функций.
лекция, добавлен 03.05.2016Теорема о существовании корня непрерывной функции. Методы отделения и уточнения корней: алгоритмы, скорость сходимости, условия применимости, их результаты. Геометрическая интерпретация методов Ньютона и хорд. Варианты выбора начального приближения.
презентация, добавлен 30.10.2013Интерполяция функции - одна из важнейших задач численного анализа. Постановка задачи интерполяции и общие идеи её решения. Применение этого метода в вычислении интегралов. Описание интерполирования методом Лагранжа. Суть интерполирования методом Ньютона.
контрольная работа, добавлен 10.01.2012Сущность метода Монте-Карло и моделирование случайных величин. Оценка погрешности метода Монте-Карло. Минимальные системные требования и описание программы для вычисления определённых интегралов методом Монте-Карло. Примера решения контрольной задачи.
курсовая работа, добавлен 23.11.2015Установление точек разрыва функции, составление уравнения асимптот. Поиск координат вершины параболы. Определение условий существования экстремума в стационарной точке. Поиск интеграла по формуле Ньютона-Лейбница. Решение дифференциального уравнения.
контрольная работа, добавлен 25.03.2014Общая характеристика процесса автоматизации решения прикладных измерительных задач. Анализ проблемы соответствия измерительной системы объекту, а также условиям измерения. Знакомство с основными особенностями мобильно-облачной измерительной системы.
статья, добавлен 10.05.2022Построение и анализ многочлена Тейлора. Примеры разложения функции по формуле Маклорена. Степенной порядок малости. Определение степени роста бесконечно большой величины в окрестности точки разрыва. Расчёт асимптоты графика функции на бесконечности.
презентация, добавлен 26.09.2017Рассмотрение основных методов сопротивления материалов. Несущая способность как способность материала воспринимать внешнюю нагрузку не разрушаясь. Характеристика гипотезы Бернулли, сферы применения. Знакомство с особенностями метода мысленных сечений.
реферат, добавлен 22.10.2013Матричная запись системы данных. Методы простых и покоординатных итераций. Типы их сходимости. Оценки итерационного процесса. Алгоритм Ньютона и его модификация: двухшаговый, разностный (дискретный) и с последовательной аппроксимацией обратных матриц.
презентация, добавлен 30.10.2013Теория вероятности как наука, которая изучает закономерности массовых случайных явлений. Знакомство с особенностями применения теории вероятности и математической статистики в экономике. Общая характеристика выборочного метода статистических исследований.
статья, добавлен 25.03.2019- 89. Римские цифры
Ознакомление с историей развития римской (буквенной) системы нумерации. Рассмотрение правил записи чисел римскими цифрами. Исследование и характеристика особенностей применения римских цифр. Изучение процесса записи арабских чисел с помощью римских.
презентация, добавлен 08.11.2015 Использование метода Эйлера для решения дифференциального уравнения. Правило Рунге практической оценки погрешности. Построение интерполяционного многочлена Ньютона. Расчет коэффициентов системы линейных уравнений при квадратичном аппроксимировании.
курсовая работа, добавлен 01.10.2012Розробка апарату некласичних мажорант і діаграм Ньютона функцій однієї та двох дійсних змінних, заданих таблично, і його використання. Порядок і принципи побудови чисельного методу відшукання екстремуму негладких і розривних функцій, заданих на проміжку.
автореферат, добавлен 22.06.2014- 92. Ряд Тейлора
Ознакомление с историей открытия ряда Тейлора, который применяется при аппроксимации функции многочленами. Рассмотрение формулы Тейлора. Исследование рядов Маклорена некоторых функций. Характеристика натурального логарифма и биноминального разложения.
контрольная работа, добавлен 16.11.2017 - 93. Численные методы
Интерполяция функций с равноотстоящими узлами. Интерполяционный полином Ньютона. Коррекция формул для вычисления конечных разностей. Анализ и прогнозирование в Excel. Изучение режимов экстраполяции данных. Численные методы решения конечных уравнений.
методичка, добавлен 06.11.2012 Понятие первообразной функции и неопределенного интеграла. Правила интегрирования. Площадь криволинейной трапеции. Формула Ньютона-Лейбница и первообразная функция. Вычисление площади области. Формулы вычисления. Площадь фигуры, ограниченная параболой.
лекция, добавлен 26.07.2015Численное решение системы дифференциальных уравнений. Рассмотрение сущности задачи Коши, краевых задач и задач на собственные значения. Интерполяция многочленом Ньютона с разделенными разностями. Условная минимизация функций нескольких переменных.
курсовая работа, добавлен 22.02.2019Нахождение погрешности на примере арифметических операций и вычисления значений функции. Постановка задачи и применение интерполирования путем разбора интерполяционной схемы Эйткена, интерполяционной формулы Гаусса, многочлена Лагранжа, Ньютона и Эрмита.
учебное пособие, добавлен 14.01.2014Основные аппроксиманты, которые используются при решении задач приближенного представления функций. Анализ особенностей применения интерполяционных сплайнов при численном дифференцировании. Формула численного интегрирования для кубического сплайна.
статья, добавлен 27.06.2016Рассмотрение основных способов нахождения оптимального решения матричных игр двух лиц с нулевой суммой. Общая характеристика этапов создания матрицы размерности 15х15, содержащей 6 седловых точек. Знакомство с особенностями игры с платежной матрицей.
лабораторная работа, добавлен 18.06.2020Алгоритм вычисления интеграла с заданной точностью. Формулы левых, правых и средних прямоугольников. Составная функция трапеции. Квадратурные формулы Ньютона-Котеса. Принцип Рунге практического оценивания погрешностей. Расчеты в малом и в целом.
презентация, добавлен 30.10.2013- 100. Симплекс-метод
Порядок подготовки задачи к применению симплекс-метода: ее приведение к каноническому виду, определение начального неотрицательного базисного решения. Общая характеристика метода и демонстрация его применения на примере. Структура и содержание таблиц.
презентация, добавлен 21.09.2017