Понятия события и вероятности события
Математическое ожидание, дисперсия, коэффициенты корреляции - основные характеристики совместного распределения нескольких случайных величин. Специфические особенности применения теоремы умножения вероятностей для рассмотрения составных испытаний.
Подобные документы
Элементы теории вероятностей. Случайные события и их вероятности. Теоремы умножения и сложения вероятностей. Формула полной вероятности и Байеса. Повторные независимые испытания. Формула Бернулли. Дискретные случайные величины. Функция распределения.
учебное пособие, добавлен 23.02.2011Понятие события в теории вероятностей. Достоверные, невозможные и случайные события. Определение вероятности события. Примеры нахождения вероятности различных событий. Понятие противоположного события. Теорема о вероятности противоположного события.
лекция, добавлен 26.07.2015Логическая сумма несовместных событий. Произведение вероятностей для независимых событий. Вероятность появления бездефектной детали. График функции распределения. Математическое ожидание, дисперсия и среднее квадратичное отклонение случайной величины.
контрольная работа, добавлен 01.03.2015Формула полной вероятности. Математическое ожидание, среднеквадратическое отклонение и дисперсия. Дискретная случайная величина. Интегральная функция распределения F(x). Квантили Х для нормального стандартного распределения по указанным вероятностям.
контрольная работа, добавлен 10.12.2013Вероятность события. Комбинаторика. Правила сложения и умножения вероятностей. Зависимые и независимые события. Формулы полной вероятности и Байеса. Случайные величины и законы их распределения. Непрерывные случайные величины и законы их распределения.
курсовая работа, добавлен 19.10.2014Определение содержания и сущности вероятности события, как численной меры степени объективной возможности этого события. Рассмотрение и анализ главных свойств вероятности. Исследование и характеристика основных теорем нахождения вероятности событий.
доклад, добавлен 17.12.2015Геометрическая и "механическая" интерпретация плотности распределения системы двух случайных величин. Характеристика теоремы умножения законов разделения. Особенность определения коэффициента корреляции. Анализ математического ожидания произведения.
шпаргалка, добавлен 27.09.2017Формулы схемы Пуассона для нахождения вероятности события. Закон распределения случайной дискретной величины, построение функции распределения. Математическое ожидание, среднее квадратическое отклонение. Проверка гипотезы критерием хи-квадрата Пирсона.
контрольная работа, добавлен 02.03.2017Закон распределения дискретной случайной величины. Построение графика функции распределения. Расчет математического ожидания, дисперсии и среднего квадратического отклонения случайной величины. Изображение графически эмпирической функции распределения.
задача, добавлен 03.07.2012Классическое определение вероятностей. Искомая вероятность указанного события. Противоположные и несовместные события. Теорема умножения независимых событий. Повторные независимые испытания. Использование интегральной предельной теоремы Лапласа.
контрольная работа, добавлен 20.01.2013Аксиоматика Колмогорова. Основные понятия комбинаторики. Классические теоретико-вероятностные модели. Предельные теоремы в схеме Бернулли. Случайные величины и их распределения. Математическое ожидание и его свойства. Неравенства. Коэффициент корреляции.
учебное пособие, добавлен 25.11.2013Понятия случайной величины и события. Основные законы распределения, используемые в теории надежности. Математическое ожидание и среднеквадратическое отклонение числа событий. Определение интенсивности отказов и вероятности безотказной работы устройства.
реферат, добавлен 18.10.2016Основные подходы к определению вероятности события и формулы комбинаторики. Дискретное распределение вероятности и понятие математического ожидания. Дисперсия и стандартное отклонение. Биноминальный закон распределения. Непрерывные случайные величины.
учебное пособие, добавлен 25.01.2012Решение задачи с помощью классического определения вероятности. Расчет вероятности события по формуле полиномиального распределения вероятностей. Использование формулы Пуассона для маловероятных событий, теорем умножения и сложения вероятностей.
контрольная работа, добавлен 06.12.2017Системы дискретных и непрерывных случайных величин, составляющие которых дискретны и непрерывны соответственно. Функция распределения системы двух случайных величин, плотность вероятностей. Аппарат числовых характеристик системы случайных величин.
контрольная работа, добавлен 20.09.2013Определение вероятности случайного события, классической вероятности, статистической. Частота случайного события. Сумма и произведение двух событий. Функции распределения и плотности, начальные и центральные моменты. Мода, медиана, асимметрия и эксцесс.
контрольная работа, добавлен 12.04.2014Методы обработки результатов опытов и получение из них необходимых данных. Понятие и обозначение случайных величин. Определение суммарной вероятности возможных значений случайной величины, ее математическое ожидание. Функция распределения вероятностей.
курсовая работа, добавлен 12.11.2012Математические подходы к определению вероятности, ее роль в науке. Классический подход к теории вероятности, понятие равновозможности. Область применения геометрической вероятности. Доказательства и примеры теорем сложения и умножения вероятностей.
реферат, добавлен 15.06.2010Вероятность несовместимых и независимых событий. Пример использования формулы Бернулли. Плотность распределения вероятностей, математическое ожидание, среднее квадратичное отклонение и дисперсия. Интервальный и дискретный ряды распределения частот.
задача, добавлен 20.11.2015Предмет и понятия теории вероятностей. Относительная частота случайного события и ее устойчивость. Теорема умножения и сложения вероятностей. Основные понятия и методы математической статистики. Генеральная совокупность и выборка. Вариационный ряд.
учебное пособие, добавлен 24.06.2014Рассмотрение теоремы умножения вероятностей. Характеристика основных задач математической статистики. Выборка как набор объектов, случайно отобранных из генеральной совокупности, виды: повторная, бесповторная. Особенности непрерывных случайных величин.
дипломная работа, добавлен 07.12.2012Анализ основных понятий теории вероятностей. Прикладное применение знания теории вероятностей, обзор ее основные видов. Понятие случайного события, логика мышления по закону вероятности. Определение вероятности какого-либо события из повседневной жизни.
доклад, добавлен 13.03.2022Общее понятие случая и события в теории вероятностей. Порядок оценки вероятности события по относительной доле благоприятных случаев. Вероятность достоверного события как вероятность события, которое всегда происходит, полагается равной единице.
презентация, добавлен 01.11.2013Понятие и примеры случайного события. Правила сложения и умножения в комбинаторике. Формулы вычисления вероятностей. Локальная и интегральная теоремы Муавра–Лапласа. Классы функций распределения. Непрерывные случайные величины. Закон больших чисел.
краткое изложение, добавлен 21.03.2018Понятие теории вероятностей, ее предмет. Возможность применения методов теории вероятностей к изучению статистических закономерностей. Математическое ожидание и дисперсия. Проявление предельных теорем при формальном изложении теории вероятностей.
контрольная работа, добавлен 01.08.2017