Анализ вероятности
Порядок и принципы построения распределения вероятности занятия линий в пучке из V-линий в соответствии с распределениями Бернулли, Пуассона и Эрланга. Расчет математического ожидания числа занятых линий, их дисперсии и среднеквадратического отклонения.
Подобные документы
Числовые характеристики выборки. Абсолютные и средние показатели вариации и способы их расчета. Расчет дисперсии и среднеквадратического отклонения по индивидуальным данным и в рядах распределения. Расчет дисперсии в интервальном ряду распределения.
контрольная работа, добавлен 27.03.2012Исследование теории вероятности математиками Тарталья и Кардано, расчет вариантов выпадения очков. Ферма и Паскаль - основатели математической теории вероятности. Введение понятия математического ожидания Гюйгенсом. Области применения теории вероятности.
реферат, добавлен 30.06.2011Основные подходы к определению вероятности события и формулы комбинаторики. Дискретное распределение вероятности и понятие математического ожидания. Дисперсия и стандартное отклонение. Биноминальный закон распределения. Непрерывные случайные величины.
учебное пособие, добавлен 25.01.2012Среднеквадратическое отклонение нормально распределенной случайной величины. Построение графиков интегральной и дифференциальной функции распределения. Порядок расчета математического ожидания и дисперсии. Определение вероятности возможных значений.
контрольная работа, добавлен 21.02.2015Вычисление выборочной средней, моды, медианы, выборочной дисперсии, среднеквадратического отклонения, асимметрии и эксцесса. Изображение прямых регрессии на графике. Расчет доверительных интервалов для оценки неизвестного математического ожидания.
контрольная работа, добавлен 01.06.2017Методика определения и оценки вероятности попадания студенту "счастливого" билета на экзамене. Анализ вероятности того, что среди 12 новорожденных будет 10 девочек. Разработка закона распределения случайной величины и вычисление математического ожидания.
контрольная работа, добавлен 19.03.2015Построение ряда распределения случайной величины, расчет ее математического ожидания и дисперсии. Определение частных, условных распределений и числовых характеристик системы случайных величин, вероятности попадания двумерной случайной величины в область.
контрольная работа, добавлен 13.01.2011Среднее квадратическое отклонение дискретной случайной величины по известному закону её распределения. Определение дифференциальной функции распределения (плотности вероятности), математического ожидания и дисперсии непрерывной случайной величины.
контрольная работа, добавлен 23.03.2014Использование теоремы Муавра Лапласа при решении задачи по теории вероятности. Нахождение закона распределения, математического ожидания и дисперсии. Построение графика функции распределения, полигона относительных частот и гистограммы накопленных частот.
задача, добавлен 24.08.2015Определение количества способов составления списка из кандидатов. Метод сложения вероятностей. Применение формулы Пуассона, критерия Фишера-Снедекора. Расчет среднего арифметического и квадратического отклонения. Расчет дисперсии, коэффициента вариации.
контрольная работа, добавлен 14.08.2011Определение математического ожидания, дисперсии, функции распределения, вероятности событий, ошибок измерений. Построение эмпирической функции распределения. Статистическая проверка гипотезы о нормальном распределении. Оценка коэффициента корреляции.
контрольная работа, добавлен 13.05.2014Классическая конструкция вероятности. Определение математического ожидания, среднего квадратического отклонения, плотности распределения случайной величины. Проверка статистических гипотез. Построение доверительного интервала. Ковариация и регрессия.
контрольная работа, добавлен 07.10.2015- 63. Броуновский мост
Расчет доверительного интервала математического ожидания для случайного процесса "Броуновский мост". Вычисление математического ожидания и дисперсии путем моделирования случайных процессов. Оценка математического ожидания и дисперсии по пучку траекторий.
курсовая работа, добавлен 09.06.2015 Элементы теории вероятностей. Случайные события и их вероятности. Теоремы умножения и сложения вероятностей. Формула полной вероятности и Байеса. Повторные независимые испытания. Формула Бернулли. Дискретные случайные величины. Функция распределения.
учебное пособие, добавлен 23.02.2011Расчет числа объектов в выборке, несмещенного среднего значения и "исправленного" среднего квадратического отклонения. Поиск доверительных интервалов для оценки неизвестного математического ожидания. Оценка объема выборки. Поиск вероятности выздоровления.
контрольная работа, добавлен 31.01.2016Решение задачи с помощью классического определения вероятности. Расчет вероятности события по формуле полиномиального распределения вероятностей. Использование формулы Пуассона для маловероятных событий, теорем умножения и сложения вероятностей.
контрольная работа, добавлен 06.12.2017Описание процесса построения кривой функции распределения, влияние изменения параметров кривой на форму кривой плотности вероятности. Последствия увеличения среднего квадратического отклонения, сущность и особенности нормального распределения Гаусса.
лабораторная работа, добавлен 08.11.2015Генерирование последовательности равномерно распределенных случайных чисел, их характеристика и построение гистограммы. Расчёт среднеквадратического отклонения, математического ожидания и дисперсии полученных данных с использованием функций SciLab.
лабораторная работа, добавлен 15.03.2014Предмет теории вероятности и ее задачи. Элементарные и сложные события. Частота событий и вероятность случайных событий. Классический способ задания вероятности. Теорема Муавра–Лапласа, схема Бернулли, теорема Пуассона. Распределение случайных величин.
шпаргалка, добавлен 09.09.2011- 70. Теорема Бернулли
Доказательство математического выражения, позволяющего находить вероятность появления события при независимых испытаниях. Варианты применения теоремы Бернулли при решении практических задач. Расшифровка модуля вероятности отклонения частоты события.
краткое изложение, добавлен 12.04.2014 Изучение основных законов распределения дискретных случайных величин. Применение на практике основных расчетов и теорий биномиального распределения. Сущность закона распределения случайных величин, формулы Бернулли и ее применение в теории вероятности.
презентация, добавлен 18.11.2012Оценка математического ожидания и дисперсии случайной величины. Анализ вероятности ее попадания в заданный интервал. Нахождение доверительных интервалов. Проверка правдоподобия гипотезы совпадении выбранного закона распределения с истинным в эксперименте.
контрольная работа, добавлен 17.10.2017Понятие, история и свойства вероятности как степени возможности наступления происшествия. Зависимые и независимые события. Теорема умножения вероятности. Относительная частота события. Математическое ожидание и формула Бернулли. Закон больших чисел.
реферат, добавлен 12.12.2013Изучение решения задач по математической статистике и теории вероятностей с помощью формулы Бейеса и Бернулли. Определение константы, вычисление математического ожидания и дисперсии величины X, а также расчет и построение графика функции распределения.
контрольная работа, добавлен 19.03.2014Использование правила суммы и правила произведения при решении задач комбинаторики. Классическое и геометрическое определение вероятности. Формула полной вероятности и формула Байеса. Схема и примеры повторных независимых испытаний (схема Бернулли).
учебное пособие, добавлен 16.02.2014