Задача Коші для еволюційних рівнянь з операторами узагальненого диференціювання та псевдо-Бесселевими операторами нескінченного порядку
Властивості операторів узагальненого диференціювання Гельфонда-Леонтьєва. Встановлення розв'язності задачі Коші для еволюційних рівнянь з псевдо-Бесселевими операторами нескінченного порядку та умовами, які є узагальненими функціями типу розподілів.
Подобные документы
Дослідження асимптотичних властивостей розв’язків істотно нелінійних диференціальних рівнянь другого порядку з нелінійностями. Розробка асимптотичних зображень для підмножин класу розв’язків. Дослідження розв’язків різницевого рівняння Емдена-Фаулера.
автореферат, добавлен 14.08.2015Поняття нормальної системи звичайних диференціальних рівнянь. Характеристика методу виключення, його використання. Розв’язання диференціального рівняння n-го порядку. Розрахунок лінійного однорідного рівняння другого порядку зі сталими коефіцієнтами.
задача, добавлен 15.03.2014Дослідження сумісності сингулярних інтегральних рівнянь з додатковими умовами. Обґрунтування застосування до них методів проекційно-ітеративного типу. Характеристика підходу до розв’язання сингулярних інтегральних рівнянь з ненульовим індексом, їх аналіз.
автореферат, добавлен 09.11.2013Дослідження нових типів систем N-арних інтегральних рівнянь. Двовимірні системи парних та потрійних інтегральних рівнянь з функціями Бесселя. Системи потрійних інтегральних рівнянь з функціями Ватсона. Теореми про умови існування розв’язків цих систем.
автореферат, добавлен 18.11.2013Умови існування періодичних розв’язків диференціальних рівнянь із запізненням. Чисельно-аналітичний метод дослідження періодичних розв’язків інтегро-диференціальних рівнянь другого порядку із запізненням у випадку Т-систем першого і другого класу.
автореферат, добавлен 28.07.2014- 106. Группы с операторами
Подгруппы и факторгруппы групп с операторами. Теоремы о гомоморфизмах. Содержание и принципы реализации теорем Шура – Цассенхауза и Фейта – Томпсона. Понятие и содержание, свойства обобщенной подгруппы Фраттини. Расширения посредством автоморфизмов.
курсовая работа, добавлен 08.01.2013 Головний аналіз диференціального рівняння, що містить аргумент, функцію та її похідну. Особливість методики розв’язку задачі Коші. Лінійні та однорідні завдання другого порядку зі сталими коефіцієнтами залежно від коренів характеристичної теореми.
методичка, добавлен 07.09.2014Огляд методів гарантованого оцінювання значень лінійних функціоналів, визначених на розв’язках вироджених крайових задач Неймана для еліптичних рівнянь і на їх правих частинах. Доведення однозначної розв’язності систем інтегро-диференціальних рівнянь.
автореферат, добавлен 27.07.2014Побудова еквівалентної крайової задачі з параметрами та лінійними крайовими умовами, що розглядається з певною системою визначальних рівнянь. Схема розв’язків багатоточкових крайових задач шляхом зведення їх до двоточкових, застосовуючи параметризацію.
автореферат, добавлен 25.08.2014Вивчення в повних банахових шкалах еліптичної, еліптичної з параметром і параболічної задачі Соболева для одного рівняння і для загальних систем. Умови існування узагальненого розв’язку і доведення теореми про повний набір ізоморфізмів, їх застосування.
автореферат, добавлен 22.02.2014Знайомство з функціями оригінала та зображення, обчисленням основних функцій, перетворенням Лапласа та оберненим перетворенням. Наближене розв’язування початково-крайової тривимірної задачі теплопровідності з використанням методу інтегральних рівнянь.
задача, добавлен 07.01.2014- 112. Задача оптимального керування для виродженої параболічної варіаційної нерівності: теорема існування
Розгляд білінійності форми, яка не задовольняє умов розв’язності еволюційних об’єктів. Вирішення задачі оптимального керування для виродженої варіаційної нерівності типу Харді-Пуанкаре. Врахування однорідних початкових умов і властивостей вагової функції.
статья, добавлен 14.09.2016 Розгляд крайової задачі для системи диференціальних рівнянь з імпульсним впливом у фіксовані моменти часу з параметрами та додатковими умовами. Побудова ітераційного і проекційно-ітеративного методів знаходження наближених розв’язків лінійної задачі.
автореферат, добавлен 28.07.2014Дослідження питання існування неперервних розв'язків систем лінійних і нелінійних різницевих рівнянь із запізненнями, розробка методу їх побудови. Побудова для систем лінійних рівнянь представлення загального неперервного розв'язку і вивчення структури.
автореферат, добавлен 22.07.2014Прямі і наближені методи розв’язання систем лінійних алгебраїчних рівнянь. Метод Гауса. Чисельне розв’язання нелінійних алгебраїчних і трансцендентних рівнянь та їх систем. Наближене розв’язання крайової задачі для звичайних диференціальних рівнянь.
курс лекций, добавлен 10.04.2012Встановлення існування та єдності розв’язків обернених задач для параболічних рівнянь з виродженням, коли невідомий залежний від часу коефіцієнт прямує до нуля при t, прямуючому до +0, за степеневим законом. Визначення залежного від часу коефіцієнта.
автореферат, добавлен 29.09.2015Дослідження умов існування та єдиності локальних і глобальних розв’язків нескінченних систем диференціальних рівнянь, що описують нескінченні ланцюги лінійно зв’язаних нелінійних осциляторів. Нелінійні різницеві рівняння з варіаційною структурою.
автореферат, добавлен 30.08.2014Встановлення критеріїв існування та єдиності обмежених (за нормою) розв’язків різницевого рівняння загального вигляду на напівосі, різницевого рівняння з періодичним операторним коефіцієнтом, узагальненого двопараметричного різницевого рівняння.
автореферат, добавлен 24.06.2014Загальні поняття інтегральних нерівностей в теорії диференціальних рівнянь: лема Гронуола – Беллмана та її частинний випадок, дослідження єдиності розв`язку задачі Коші, узагальнення і посилення леми. Умови Ліпшиця та Пікара при доведенні теореми.
контрольная работа, добавлен 14.06.2009Дослідження вироджених нелінійних різницевих рівнянь у банахових просторах. Побудова обмеженого напівінваріантного многовиду та наближене відшукання періодичних розв’язків рівнянь вказаного типу. Приклади лінійних різницевих рівнянь у просторі m.
автореферат, добавлен 09.08.2014Розкриття методу Фур’є для різних типів гіперболічних рівнянь: неоднорідних, вільних коливань струни. Загальна перша крайова задача. Крайові задачі зі стаціонарними неоднорідностями. Задачі без початкових умов. Загальна схема методу поділу змінних.
курсовая работа, добавлен 21.04.2012Достатні умови існування розв’язку узагальненої нормальної крайової задачі для квазілінійної параболічної системи з лінійною головною частиною. Використання теореми Шаудера та принципу стисних відображень. Оцінка значень спряжених операторів Ґріна.
автореферат, добавлен 25.08.2014Умови існування та єдиності розв'язку нелокальної крайової задачі для систем лінійних функціонально-диференціальних рівнянь загального вигляду. Визначення локалізації розв'язків у множині функцій з обмеженим ростом та дослідження питання про їх єдиність.
автореферат, добавлен 27.08.2015Побудова апроксимаційних моделей за допомогою методу дискретизації часу для стохастичних диференціальних рівнянь у гільбертовому просторі. Швидкість збіжності апроксимацій за схемами Ейлера і Мільштейна для напівлінійних рівнянь еволюційного типу.
автореферат, добавлен 07.08.2014- 125. Деякі властивості лінійних диференціальних рівнянь другого порядку з мероморфними коефіцієнтами
Розв'язання тригонометричних крайових задач пов'язаних з квазіполіномами. Знаходження мероморфних коефіцієнтів лінійного диференціального рівняння другого порядку без першої похідної. Дослідження апроксимаційних властивостей функцій Бесселя першого роду.
автореферат, добавлен 27.08.2015