Выдающиеся ученые математики

Рассмотрение биографии великих ученых и их основных заслуг в области математики. Характеристика достижений и научных открытий Евклида, Пифагора, И. Ньютона, Б. Паскаля, Г. Лейбница, Р. Декарда, Л. Эйлера, Б. Римана, К. Гаусса, А. Тьюринга и Э. Уайлса.

Подобные документы

  • Рассмотрение особенностей развития математического обучения и его влияния на систему обучения дискретной математики. Сравнительный анализ влияния выбора направления развития дискретной математики. Внедрение разработок в развитие математического обучения.

    статья, добавлен 11.10.2024

  • Значение арифметики как науки. Изучение действий над целыми и дробными числами, методов решения задач, сводящихся к сложению, вычитанию, умножению и делению. История развития арифметических знаний. Теории великих математиков: Пифагора, Архимеда, Евклида.

    реферат, добавлен 10.01.2014

  • Роль математики в современной науке. Влияние математики на изменение самого стиля научного мышления, на изменение традиционных способов умозаключений. Аксиоматический метод изложения, принятый в геометрии. Внутреннее логическое единство математики.

    реферат, добавлен 08.11.2012

  • Рассмотрение и характеристика сущности и основных видов текстовых задач. Решение текстовых задач методом составления уравнений. Изучение нестандартных задач в школьном курсе математики. Ознакомление с методикой обучения решения "аномальных" задач.

    дипломная работа, добавлен 18.07.2014

  • История возникновения и развития математики в Древнем Египте, её использование при расчетах в строительных работах, сборе налогов, разделе имущества, измерении площадей полей. Философские проблемы математики, направления обоснования науки XX века.

    реферат, добавлен 02.03.2015

  • Жизненный и творческий путь одного из известных историков математики, доктора физико-математических наук, профессора Константина Алексеевича Рыбникова, научные интересы которого были посвящены истории математики, логике и комбинаторному анализу.

    статья, добавлен 30.07.2016

  • Рассмотрение математики как науки о структурах, порядке и отношениях. Изучение творений Диофанта и задач Эвклида. Изобретение позиционной системы счисления в Индии. Характеристика роли в развитии русской науки книги "Арифметика, или наука числительная".

    презентация, добавлен 05.11.2013

  • Первая математическая деятельность: счет и наскальные рисунки. Развитие математики в Вавилоне и Египте. Греческая математика, получение заключений на основе дедуктивного рассуждения. Математики Индии, появление нуля. Математика эпохи Возрождения.

    реферат, добавлен 22.06.2014

  • Рассмотрение роли математической науки в жизни людей. Использование математики в отраслях быта и народного хозяйства. Взаимосвязь арифметики с логическими способностями. Запрещенные приемы в математических софизмах. Аксиома Евклида о параллельных прямых.

    презентация, добавлен 07.02.2014

  • Появление математики как систематической науки и влияние на философское мышление. Философские предпосылки обоснования исчисления бесконечно малых в эпоху Возрождения. Неевклидовы геометрии и развитие философии математики в XIX веке. Математика в XX веке.

    реферат, добавлен 11.09.2010

  • Роль математики в повседневной жизни и быту. Использование математики в химии, физике, экономике, бухгалтерии, информатике и программировании. Определение значения математики в формировании умений анализировать и моделировать различные ситуации.

    статья, добавлен 18.03.2019

  • Понятие и сущность текстовой задачи. Вспомогательные модели, используемые в начальном обучении математики. Решение системы уравнений алгебраическим способом. Использование методов текстовых арифметических задач на уроках математики в начальных классах.

    методичка, добавлен 28.03.2017

  • Комбинаторика как раздел дискретной математики, изучающий дискретные объекты, множества и отношения на них. История термина "комбинаторика", элементы этой области математики. Примеры решения комбинаторных задач: перестановки, размещения, сочетания.

    контрольная работа, добавлен 09.01.2019

  • Вычисление значения функции в точке. Характеристика интегральной суммы функции на отрезке. Определение нижнего и верхнего предела интегрирования. Рассмотрение методов применения формулы Ньютона-Лейбница. Установление основных способов замены переменной.

    задача, добавлен 17.02.2016

  • Греческая философия и математика. Возрождение. Философские предпосылки обоснования исчисления бесконечно малых. Неевклидовы геометрии и развитие философии математики в XIX в. Философия в сфере математики, способствующая выработке математического знания.

    реферат, добавлен 08.09.2010

  • Теория графов как способ решения задач. Задачи о кёнигсбергских мостах Эйлера. Способы представления графа. Эйлерова линия, проходящая по всем ребрам в точности по одному разу. Зарождение еще одной области в математики в ходе решения головоломок.

    контрольная работа, добавлен 07.11.2013

  • Первые оптические эксперименты, одного из создателей классической физики, Исаака Ньютона. Открытие им закона всемирного тяготения. Математические работы. Совместные наработки и спор с Лейбницем. Математические начала натуральной философии Ньютона.

    реферат, добавлен 20.05.2013

  • Прикладная математика как объединение всех математических методов и дисциплин, находящих практическое применение за пределами чистой математики. Применение математики в других областях науки и техники (в физике, химии, астрономии, экономике, инженерии).

    статья, добавлен 30.03.2019

  • Анализ основных критериев, от которых зависит вывод формулы оптимального, объективного наукометрического показателя оценки научных достижений. Характеристика дробно-линейной математической функции, используемой для определения вклада ученого в науку.

    статья, добавлен 26.07.2018

  • Анализ возможностей применения математики для решения прикладных задач. Изменение роли прикладной математики в связи с широким применение персональных компьютеров. Разработка методов решения тех задач, которые в настоящее время не поддаются решению.

    реферат, добавлен 05.11.2016

  • Фундаментальное значение теоремы Пифагора для геометрии. Методы Евклида и Леонардо Давинчи. Алгебраическая формулировка теоремы. Доказывание ее через подобные треугольники, равнодополняемость, методом площадей. Применение в Индии "правила веревки".

    презентация, добавлен 17.11.2015

  • Основные этапы развития математики. Архимед как пионер математической физики. Машины, построенные с использованием рычага и блока. Внедрение технических изобретений в Римской империи. Открытия Коперника. Роль математики в инженерном образовании.

    реферат, добавлен 10.04.2014

  • Методические системы работы учителей математики, их сущность и эффективность применения. Формы организации учебной деятельности школьников. Вклад учителей математики в реализацию реформы школы. Основные методы работы учителя математики Л.Ф. Российской.

    статья, добавлен 22.05.2009

  • Теоретические основы этноориентированного обучения математики в общеобразовательной школе. Выявление необходимости реализации этноориентированного обучения на уроках математики. Задачи с этнорегиональным содержанием при изучении темы "Целые числа".

    контрольная работа, добавлен 12.06.2021

  • История и характеристика профессии "автомеханик". Установление основных видов деятельности в профессии автомеханика. Определение областей автомобиля, в которых понадобятся знания математики. Обоснование необходимости математики для технических профессий.

    статья, добавлен 18.03.2019

Работы в архивах красиво оформлены согласно требованиям ВУЗов и содержат рисунки, диаграммы, формулы и т.д.
PPT, PPTX и PDF-файлы представлены только в архивах.
Рекомендуем скачать работу и оценить ее, кликнув по соответствующей звездочке.