Линеаризация и метод наименьших квадратов
Метод наименьших квадратов: сущность и основное содержание, особенности использования в решении задачи нахождения одной результирующей прямой и анализе экспериментальных результатов на принадлежность нескольким прямым. Оценка эффективности метода.
Подобные документы
Выдвижение рабочей гипотезы. Теоретическая регрессия. Влияние случайного члена. Простая регрессионная модель. Метод наименьших квадратов. Прямой расчет коэффициентов регрессии. Проверка гипотез о статистической значимости уравнений парной регрессии.
презентация, добавлен 20.01.2015Сущность и характерные особенности функции нескольких переменных, порядок расчета и анализа ее дифференциала. Определение частных производных. Применение дифференциала к приближенным вычислениям. Метод множителей Лагранжа и наименьших квадратов.
методичка, добавлен 19.09.2017Основные понятия математической статистики. Оценка параметров, проверка гипотез и основы регрессионного анализа. Точечное и интегральное оценивание и их эффективность. Критерии согласия и линейная регрессия. Метод наименьших квадратов. Теорема Пирсона.
курс лекций, добавлен 03.07.2013Особенности применения теоремы Лангранжа к подынтегральной функции. Теорема о дифференцировании определенного интеграла по переменному верхнему пределу. Аппроксимация дифференциальной задачи на примере разностной схемы метода наименьших квадратов.
шпаргалка, добавлен 24.10.2010Целесообразность использования статистических методов в проблеме поиска оптимальных условий проведения эксперимента. Наука планирования и организации эксперимента. Обработка экспериментальных данных методом наименьших квадратов, регрессионная зависимость.
дипломная работа, добавлен 10.02.2016Сущность линейной регрессии как метода восстановления зависимости между двумя переменными. Особенности регрессионной модели. Рассмотрение основных функций предиктора. Характеристика метода наименьших квадратов. Порядок определения линейной регрессии.
краткое изложение, добавлен 17.03.2015Математические методы систематизации, использование статистических данных для научных и практических выводов. Использование метода наименьших квадратов для исследования линейной регрессии и нахождения выборочного коэффициента корреляции исходных данных.
курсовая работа, добавлен 19.06.2015Разработка рекуррентного алгоритма, позволяющего получать сильно состоятельные оценки параметров многомерных по входу линейных динамических систем при наличии помех наблюдения во входных и выходных сигналах. Оценка эффективности предложенного метода.
статья, добавлен 31.08.2018Геометрическая интерпретация множественной регрессионной модели с двумя объясняющими переменными. Метод наименьших квадратов для модели множественной регрессии, статистические гипотезы, свойства регрессионных коэффициентов, вычисление стандартной ошибки.
презентация, добавлен 20.01.2015Временной ряд и его основные элементы, закономерности автокорреляция уровней и выявление структуры. Моделирование тенденции и метод наименьших квадратов. Приведение уравнения тренда к линейному виду. Аддитивная и мультипликативная модели временного ряда.
реферат, добавлен 07.09.2015Построение регрессионных моделей по рядам динамики. Использование критериев Фишера и Стьюдента, формулы линейного коэффициента корреляции. Оценка параметров уравнения регрессии, применение метода наименьших квадратов. Примеры гетероскедастичности.
контрольная работа, добавлен 25.04.2015Составление линейной функции и решение системы из двух уравнений с двумя неизвестными. Формулы для нахождения коэффициентов по методу наименьших квадратов. Зависимость для показательной, линейной и квадратичной функций, их построение. Частные производные.
контрольная работа, добавлен 29.03.2013Характеристика основных элементарных функций. Изучение арифметических свойств пределов. Суть формулы непрерывных процентов. Анализ точек разрыва и их классификации. Особенность неопределенного интеграла и его свойств. Оценка метода наименьших квадратов.
шпаргалка, добавлен 22.04.2015Состав системы уравнений для определения коэффициентов многочленов наилучшего среднеквадратичного приближения. Таблица значений многочленов наилучшего среднеквадратичного приближения. Графики аппроксимируемой функции, заданной на дискретном множестве.
лабораторная работа, добавлен 09.12.2019Рассмотрение метода наименьших квадратов как базового метода оценки неизвестных параметров регрессионных моделей по выборочным данным. Нахождение выборочного уравнения зависимости y от x на основании выборки из четырех наблюдений и построение зависимости.
контрольная работа, добавлен 27.04.2014Рассмотрение особенностей исследования остаточных величин. Характеристика основных случаев применения метода Гольдфельда-Квандта. Определение значения отсутствия автокорреляции остатков. Выявление алгоритма проверки регрессии на гетероскедастичность.
презентация, добавлен 13.07.2015Распределение температуры вдоль тонкого цилиндрического стержня, помещенного в высокотемпературный поток жидкости или газа путем анализа математической модели. Задача регрессии. Метод наименьших квадратов. Проверка гипотезы об адекватности модели.
контрольная работа, добавлен 10.06.2011Исследование закономерностей и связей между двумя дискретными случайными величинами X и Y, при помощи статистических методов. Выборочная дисперсия и выборочные числовые параметры. Расчет коэффициента корреляции. Регрессия и метод наименьших квадратов.
курсовая работа, добавлен 10.12.2012Случайная величина. Генеральная совокупность и выборка. Результат измерения. Доверительный интервал. Погрешности косвенных измерений. Алгоритм обработки данных косвенных измерений выборочным методом. Задача регрессии и метод наименьших квадратов.
методичка, добавлен 24.05.2012Сущность регрессионного анализа, его цели и условия применения. Характеристика уравнения регрессии, метода наименьших квадратов, диаграммы рассеяния. Остаточная дисперсия и коэффициент детерминации R-квадрат. Коэффициент множественной корреляции R.
презентация, добавлен 18.12.2012Решение дифференциального уравнения методом Эйлера-Коши. Интерполяционный многочлен Лагранжа. Метод наименьших квадратов. График решения дифференциального уравнения. Расчет погрешности аппроксимации. Множество решений дифференциального уравнения.
курсовая работа, добавлен 08.06.2013Построение модели парной, линейной и нелинейной регрессии в эконометрике. Сущность нелинейных уравнений. Определение параметров в моделях парной регрессии. Характеристика метода наименьших квадратов. Понятие коэффициента детерминации и корреляции.
доклад, добавлен 19.11.2012Открытие К.Ф. Гауссом основного закона погрешностей, с которым связан способ наименьших квадратов. Разнообразие методов обработки результатов эксперимента. Эффективное использование избыточной информации. Противоречивость системы линейных уравнений.
доклад, добавлен 10.09.2015Методика построения аппроксимирующей функции, которая наилучшим образом сглаживает экспериментальную зависимость, заданной таблично. Замена громоздкого табличного способа представления данных эксперимента как одна из важнейших задач аппроксимации.
лабораторная работа, добавлен 05.09.2022Применение метода наименьших квадратов при составлении математического описания криволинейной парной, единичной и множественной линейных регрессий. Особенности описания частной криволинейной регрессии на основе множественной линейной регрессии.
краткое изложение, добавлен 22.05.2010