Математический структурализм с точки зрения (модальной) теории множеств
Характеристика конфликта с принципом неопределенной расширяемости и с теоретико-множественным плюрализмом. Преимущества использования модального теоретико-множественного подхода. Адекватность решения трудностей с теоретико-множественным плюрализмом.
Подобные документы
Применение теоретико-группового подхода к оптимизации систем с распределёнными параметрами. Оптимизация тепломассообмена в ламинарном пограничном слое электропроводящего газа на проницаемой пористой цилиндрической поверхности при наличии магнитного поля.
статья, добавлен 28.11.2016Управление интеллектуальным мобильным роботом в неструктурированной среде. Математический аппарат нечетких множеств: типовые формы кривых для задания функций принадлежности, примеры: треугольная, трапецеидальная и гауссова функции принадлежности.
контрольная работа, добавлен 28.05.2013Понятие о графе, способы его задания. Достижимость и обратная достижимость вершин графа. Графовые модели для оптимизации транспортных сетей и потоков, решения задач календарного планирования, задач о назначениях и других задач дискретной оптимизации.
курсовая работа, добавлен 21.12.2011Теорема существования и единственности решения. Принципы графического представления задачи Коши в математике. Характеристики частного решения дифференциального уравнения. Особые точки и способы их использования дифференциальных уравнений первого порядка.
контрольная работа, добавлен 04.12.2014Определение понятия линейной, неотрицательной и выпуклой комбинации точек плоскости и n-мерного пространства. Характеристика неравенства Коши-Буняковского. Изучение связных, несвязных, ограниченных, неограниченных множеств. Анализ компактных множеств.
курсовая работа, добавлен 21.09.2017Введение в теорию множеств. Задачи, связанные с операциями над конечными множествами. Декартово произведение множеств. Основные элементарные функции. Понятия и величины дискретной математики. Элементы теории вероятностей и математической статистики.
лекция, добавлен 07.05.2014Понятие, элементы и виды множества. Круги Эйлера. Разбиение на части. Декартово произведение множеств. Число элементов в объединении и разности конечных множеств. Способы решения текстовой задачи. Аксиоматическое построение системы натуральных чисел.
курс лекций, добавлен 26.11.2016Основные понятия теории обыкновенных дифференциальных уравнений первого порядка. Достаточные условия существования и единственности решения задачи Коши. Метод последовательных приближений функции. Численные способы математического решения задачи Коши.
дипломная работа, добавлен 06.03.2016Основные понятия и обозначения, связанные с множествами и операциями над ними. Формула мощности объединения нескольких множеств. Теорема Кантора-Бернштейна и ее доказательства равномощности. Бинарное отношение эквивалентности и порядка. Теорема Цермело.
курс лекций, добавлен 28.12.2013Определение и примеры мощности множеств. Определение бинарного отношения. Описание способов задания отношений. Характеристика свойств бинарных отношений. Изучение отношений эквивалентности и частичного порядка. Анализ свойств отображения функций.
лекция, добавлен 25.12.2016Исследование аналитических задач, возникающих перед субъектами расследования преступлений, связанных с установлением взаимосвязей между фигурантами преступления и обстоятельствами его совершения, такими как дата, время, место на основе теории графов.
статья, добавлен 08.03.2019- 62. Нечеткая логика
Форма классической логики и теории множеств, базирующиеся на понятии нечёткого множества. Применение нечетких множеств в экономическом, финансовом анализе и в современных технологиях управления. Алгоритм по формализации задачи в терминах нечеткой логики.
презентация, добавлен 29.06.2022 Образование множеств и выполнение элементарных операций. Образование подстановки её степеней. Последовательные степени до получения тождественной подстановки. Малая конечная арифметика. Работа по правилу неповторяемости элементов в строках и столбцах.
контрольная работа, добавлен 29.03.2017Основные идеи системной нечеткой интервальной математики. Доказательство теорем, показывающих, что нечеткие множества и результаты операций над ними можно рассматривать как проекции случайных множеств и результатов соответствующих операций над ними.
статья, добавлен 12.05.2017Методика постановки математических задач для поиска оптимального решения. Специфика использования геометрического и динамического программирования для решения заданий оптимизации многостадийных процессов. Принципы построения многоугольника решений.
реферат, добавлен 22.01.2014Разработана математическая модель здания на основании теории множеств. Определены параметры дефектов для каждого конструктивного элемента и их соответствующие предельно-допустимые значения, проведен анализ технического состояния конструктивного элемента.
статья, добавлен 20.11.2020Число, как основное понятие математики. Начало тождественности, принцип формы неопределенной двоицы. Абстрактное отношение величины к другой величине и аксиоматическое построение математической теории. Функции чисел и характеристика количества предметов.
реферат, добавлен 05.10.2015Рассмотрение основных понятий теории множеств. Сущность элементарных тождеств, их функции и признаки. Главные свойства операций над отношениями: эквивалентности, толерантности, частичности порядка. Характеристика теории графов: эйлеровы, гамильтоновы.
учебное пособие, добавлен 28.12.2013- 69. Теория множеств
Определение понятия множеств Г. Кантора, их примеры и обозначения. Операции над множествами: пересечение, объединение, разность и дополнение, их наглядное представление на диаграмме Эйлера-Венна. Равенство, тождественность и эквивалентность множеств.
презентация, добавлен 10.05.2016 Теория графов как один из разделов дискретной математики, исследующий свойства конечных множеств с заданными отношениями между их элементами. Методика решения задач календарно-сетевого планирования и управления. Сущность алгоритма Форда-Фалкерсона.
лабораторная работа, добавлен 28.05.2015Доказывание тождеств в теории множеств. Рассмотрение основных положений комбинаторики. Определение Эйлеровой цепи в неориентированном графе. Решение задач по алгебре логики. Изучение возможностей решения системы уравнений с использованием метода Гаусса.
контрольная работа, добавлен 20.01.2022Понятие и сущность, математическое обоснование множеств, их классификация и типы, характеристика и свойства, основные способы задания. Общее описание и принципы реализации операций над множествами: объединение, пересечение, разность и дополнение.
контрольная работа, добавлен 17.06.2015Ознакомление с методами решения основных задач математической статистики с использованием критерия согласия Пирсона. Изучение характеристических функций, которые используются в дальнейшем в теории математической статистики и теории вероятностей.
курсовая работа, добавлен 21.04.2015Понятие и общая характеристика различных типов точечных множеств: ограниченных сверху и снизу, неограниченных. Определение верхней и нижней грани. Расположение точечного множества вблизи какой-либо точки на прямой. Открытые и замкнутые множества.
курсовая работа, добавлен 19.11.2014- 75. Теория игр
Изучение формальных моделей принятия оптимальных решений в условиях конфликта. Конкретизация объектов конфликта и связей между ними в теории игр. Рассмотрение примеров бескоалиционной игры. Антагонистические и позиционные игры в современной теории игр.
реферат, добавлен 22.06.2016