Вложение классов функций, интегрируемых с весом на отрезке и удовлетворяющих условия типа Липшица

Особенность обобщения теоремы о вложении Харди-Литтлвуда для некоторых классов функций, интегрируемых с весом на отрезке. Применение для внутреннего интеграла неравенства Гельдера. Введение средних непрерывных из-за непрерывности интегрирования Лебега.

Подобные документы

  • Задача интегрального и дифференциального исчисления. Свойства неопределённого интеграла. Метод непосредственного интегрирования, интегрирования по частям. Интегрирование рациональных дробей, тригонометрических функций, простейших иррациональных функций.

    презентация, добавлен 24.09.2019

  • Теорема Вейерштрасса, исследование свойств функции, непрерывной на заданном отрезке. Схема и основные этапы нахождения наибольшего и наименьшего значения функции на отрезке. Расчет критических точек, в которых производная равна нулю или не существует.

    презентация, добавлен 21.09.2013

  • Обобщение теоремы искажения в классе S. Неравенства, дающие точные границы для модуля производных функций на любой окружности, лежащей в круге. Свойства однолистных в единичном круге функций, которые геометрически характеризуют конформные отображения.

    статья, добавлен 31.05.2013

  • Разработка нового способа для установления интегрируемости неограниченных разрывных функций. Теории первообразных функций. Восстановление функции по известной ее исправленной производной. Классическая теория интеграла Лебега. Дельта–функция Дирака.

    статья, добавлен 20.05.2018

  • Неравенства Гельдера и Минковского. Декартово произведение метрических пространств. Пространства непрерывных и непрерывно дифференцируемых функций. Принцип сжимающих отображений. Линейные нормированные пространства. Полнота метрических пространств.

    учебное пособие, добавлен 08.12.2013

  • Свойства неопределённых интегралов. Интегрирование по частям. Понятие рациональной дроби. Интегрирование некоторых классов тригонометрических функций. Нахождение площади плоской фигуры. Существование определённого интеграла. Дифференциальные уравнения.

    контрольная работа, добавлен 30.01.2012

  • Предел функций многих переменных. Анализ пределов и непрерывности в многомерных пространствах. Нахождение частной производной и кратное интегрирование. Фундаментальная теорема анализа функций многих переменных. Теоремы интегрирования векторного анализа.

    контрольная работа, добавлен 27.11.2013

  • Основные свойства неравенства Юнга, Гельдера и Минковского. Изучение теоремы Рериха, собственных значений и функций оператора Лапласа. Обобщенные решения краевых задач для уравнения Пуассона. Банаховы, метрические и линейные топологические пространства.

    книга, добавлен 19.05.2011

  • Определение пределов последовательности и функции. Точки непрерывности и точки разрыва функции, производные и их приложения. Анализ примеров нахождения производных. Наибольшее и наименьшее значение функции на отрезке, ее исследование на экстремум.

    контрольная работа, добавлен 23.01.2015

  • Понятие непрерывной функции y=f(x) на промежутке Х. Доказательство непрерывности функции y=cos(x) на всей числовой оси с использованием формулы разности косинусов. Геометрический смысл теоремы о существовании нуля. Метод приближенного решения уравнения.

    презентация, добавлен 21.09.2013

  • Определение площади плоской фигуры, объема тел вращения, образованных при вращении вокруг оси, с помощью определенного интеграла. Понятие несобственного интеграла с бесконечными пределами интегрирования, несобственные интегралы от разрывных функций.

    лекция, добавлен 09.04.2018

  • Исследование функций при помощи производных и построение графиков. Необходимые и достаточные условия возрастания и убывания функции. Теорема и ее доказательство. Применение теоремы для убывающих функций. Подробное объяснение и решение задач.

    лекция, добавлен 05.03.2009

  • Определение свойств неопределенного интеграла. Рассмотрение таблицы основных неопределенных интегралов. Характеристика методов интегрирования тригонометрических и гиперболических функций: замены переменной, подстановки и интегрирования по частям.

    презентация, добавлен 26.09.2017

  • Вычисление пределов функций без использования правила Лопиталя. Нахождение производных функций с использованием формул и правил дифференцирования. Нахождение наибольшего и наименьшего значения функции на отрезке. Нахождение интервалов монотонности.

    контрольная работа, добавлен 06.01.2015

  • Определение и свойства функций действительного переменного, условия непрерывности, дифференцируемости и интегрируемости. Понятие меры функций и множества. Особенности функций комплексного переменного, понятие аналитичности. Интегральная теорема Коши.

    лекция, добавлен 21.04.2010

  • Связь корреляционно-иммунных булевых функций с кодами и ортогональными массивами. Линейные и квазилинейные переменные. Оптимизация неравенства Зигенталера для каждой отдельной переменной. Теорема для регулярных функций типа теоремы Симона-Вегенера.

    научная работа, добавлен 15.09.2012

  • Характеристика особенностей первого и второго замечательного пределов. Сравнение бесконечно малых функций. Рассмотрение значения и места непрерывных функций. Определение непрерывности функции в точке. Исследование точки разрыва и их классификации.

    реферат, добавлен 18.12.2017

  • Свойства неопределенного интеграла. Применение метода подстановки для различных типов функций. Разложение интегральной функции. Формула понижения степени для интеграла. Интегрирование иррациональных функций. Подстановки Эйлера. Дифференциальные биномы.

    контрольная работа, добавлен 22.12.2015

  • Частичные полукольца непрерывных функций на топологических пространствах X со значениями в полукольце [0, ∞] рассматриваемом с обычной топологией. Максимальные идеалы и основополагающие свойства простых идеалов. Применение соответствий полуколец.

    статья, добавлен 26.04.2019

  • Разработка программно-алгоритмической поддержки символьных преобразований и вычислений на основе средств компьютерной алгебры с представлением решений. Апробация программ на известных задачах и применение их для символьно-численного интегрирования.

    автореферат, добавлен 27.03.2018

  • Основные свойства множества числовых последовательностей вещественных чисел. Интеграл Лебега и его особенности. Характеристика главных аспектов интеграла. Анализ классов нормированных пространств. Изучение связи между различными типами сходимости.

    реферат, добавлен 19.02.2014

  • Локальный экстремум функции. Отыскание наибольшего и наименьшего значения непрерывной функции на отрезке. Расчет интервалов выпуклости графика кривой и точек перегиба функции. Определение интервалов возрастания и убывания функций с помощью производных.

    лекция, добавлен 07.07.2015

  • Тригонометрический ряд Фурье и его основные свойства. Сущность теоремы Римана–Лебега. Сдвиг и растяжение основного промежутка. Гармонический анализ непериодических функций. Метод средних арифметических и метод Чезаро. Ряд теорем Карла Вейерштрасса.

    учебное пособие, добавлен 28.12.2013

  • Особенности решения задачи нахождения интеграла от функции, которая является иррациональной. Методы выполнения подстановок, которые позволяют привести подынтегральное выражение к рациональному виду, более удобному для интегрирования тех или иных функций.

    презентация, добавлен 18.09.2013

  • Определение основных понятий непрерывности функции в точке. Расчет величин прироста аргумента. Арифметические действия элементарных функций. Понятие гиперболических функций и их формулы. Множество и его значение. Точка разрыва и теорема непрерывности.

    лекция, добавлен 26.01.2014

Работы в архивах красиво оформлены согласно требованиям ВУЗов и содержат рисунки, диаграммы, формулы и т.д.
PPT, PPTX и PDF-файлы представлены только в архивах.
Рекомендуем скачать работу и оценить ее, кликнув по соответствующей звездочке.