Фракталы

Общее понятие о фракталах. Самоподобие как одно из основных свойств фракталов. Основные типы фракталов и их характеристики: геометрические, алгебраические и схоластические. Роль фракталов в современном мире, основные области и сферы их применения.

Подобные документы

  • Тригонометрия и сферы ее применения. Понятие, исторические сведения о возникновении и изучении синуса угла. Нахождение тригонометрических функций по единичной окружности. Определение связей синуса, косинуса, тангенса и котангенса со своими углами.

    презентация, добавлен 13.11.2016

  • Математическое ожидание, дисперсия, коэффициенты корреляции - основные характеристики совместного распределения нескольких случайных величин. Специфические особенности применения теоремы умножения вероятностей для рассмотрения составных испытаний.

    реферат, добавлен 05.12.2021

  • Определение и условие существования определенного интеграла, геометрические приложения: длина дуги, объем тела, площадь поверхности. Физические приложения: работа переменной силы, давление жидкости; статические моменты и координаты центра тяжести.

    контрольная работа, добавлен 12.06.2012

  • Основные уравнения для решения постановки пространственных нестационарных задач теории термоупругопластичности. Геометрические соотношения и определяющие уравнения, описывающие неизотермические процессы нагружения с учетом траектории деформирования.

    статья, добавлен 29.11.2016

  • История появления геометрии, происхождение термина. Познания в этой науке древних греков, развитие знаний в Вавилоне, Китае, Египте. Вклад в развитие геометрии Евклида. Основные понятия планиметрии. Построение и измерение углов, действия над ними.

    практическая работа, добавлен 29.01.2012

  • Понятие математических матриц, источники их формирования и развития в науке. Основные элементы и их взаимодействие. Описание действий с таблицами: сложение, вычитание, умножение между собой и на число. Рассмотрение свойств транспортированных матриц.

    презентация, добавлен 23.12.2013

  • Математика как наука о количественных отношениях и пространственных формах действительного мира. Этапы развития математики. Использование в математике двух видов умозаключений: дедукции и индукции. Роль математики в различных областях деятельности.

    реферат, добавлен 18.06.2012

  • Изучение биографии Николая Ивановича Лобачевского - выдающегося российского математика. Геометрические исследования ученого по теории параллельных линий. Создание учебников по элементарной математике и алгебре. Основные аксиомы геометрии Лобачевского.

    презентация, добавлен 24.02.2014

  • Возникновение, становление и современное понятие о статистике. Статистико-математическое направление статистической науки. Использование науки в античном, древнем и современном мире. Статистика как совокупность сведений о массовых явлениях и их законах.

    реферат, добавлен 05.04.2011

  • Теория чисел как непосредственное развитие арифметики, краткий исторический очерк. Понятие числового поля и алгебраического числа. Доказательство теоремы Лиувилля о приближении алгебраических чисел. Подтверждение существования трансцендентных чисел.

    контрольная работа, добавлен 30.10.2010

  • Общее понятие об оригами, его применение в различных сферах жизни: для украшения праздничного стола, упаковки подарков и создания одежды. Методы решения задач с помощью оригаметрии. Основные аксиомы, доказательство теорем и примеры решения задач.

    презентация, добавлен 16.01.2017

  • Общее понятие о степенных функциях, их свойства и основные черты. Разновидности графиков степенных функций: прямая, парабола, кубическая парабола, гипербола. Особенности функций с четным и нечетным числом. Преобразования графиков степенных функций.

    презентация, добавлен 02.03.2012

  • Формализованные методы описания и исследования систем. Понятия и определения графов, способы их задания и типы. Применение графов для исследования систем, построение и преобразования их структуры. Случайные события и величины, их основные характеристики.

    курсовая работа, добавлен 21.01.2016

  • Способы задания дискретной случайной величины. Изучение основных свойств функции распределения. Вероятность того, что непрерывная случайная величина примет одно определенное значение. Плотность распределения вероятностей непрерывной случайной величины.

    презентация, добавлен 08.12.2014

  • Понятие кривой. Вычисление кривизны плоской кривой, ее радиус, круг. Алгебраические и трансцендентные кривые. Класс алгебраической кривой: парабола, гипербола, эллипс. Кривые 3 и 4 порядка. Параметрические уравнения циссоиды и астроиды. Свойства эволюты.

    курсовая работа, добавлен 17.08.2010

  • Развитие землемерения, астрономии и строительного дела как одни из причин возникновения тригонометрии. Характеристика ключевых свойств тригонометрических функций. Синус - отношение противолежащего катета к гипотенузе. Основные формулы двойного угла.

    презентация, добавлен 03.04.2015

  • История возникновения понятий шара и шаровой (сферической) поверхности, их определение как геометрических фигур. Рассмотрение уравнения сферы и основных геометрических формул (площади сферы, объема шара, площади сегмента сферы). Теоремы и доказательства.

    реферат, добавлен 02.04.2012

  • Изучение правил действий с квадратными корнями и способов преобразования выражений с квадратными корнями. Квадратный корень из числа, его вычисление, геометрические приложения и основные тождества. Квадратный корень из произведения, дроби и степени.

    реферат, добавлен 06.03.2010

  • Установление возникновения необходимости извлекать квадратные корни из отрицательных чисел. Особенности использования аппарата комплексных чисел. Основные понятия и арифметические действия над ними. Определение основных свойств операции сопряжения.

    реферат, добавлен 03.11.2015

  • Определение свойств неопределенного интеграла. Рассмотрение таблицы основных неопределенных интегралов. Характеристика методов интегрирования тригонометрических и гиперболических функций: замены переменной, подстановки и интегрирования по частям.

    презентация, добавлен 26.09.2017

  • Исследование зависимости свойств и графика степенной функции от свойств степени с действительным показателем. Характеристика области определения, множества значений, функции на промежутке. Определение показателей с натуральным, четным и нечетным числом.

    презентация, добавлен 02.03.2012

  • Поле как множество, содержащее не менее двух элементов, на котором заданы две бинарные алгебраические операции – умножение и сложение. Варианты построения множества рациональных чисел. Элементарное понятие о дробном числе. Введение правил сравнения.

    методичка, добавлен 17.09.2014

  • Понятие и общая характеристика, а также отличительные свойства и признаки аксонометрической проекции как способа изображения геометрических предметов на чертеже при помощи параллельных проекций, их разновидности. Основные типы и формы искажений.

    презентация, добавлен 26.04.2014

  • Характеристика главных способов задания функции: табличная, аналитическая. Сущность области определения и предел функции двух переменных. Основные правила нахождения пределов. Непрерывность функции двух переменных, описание свойств и определений.

    лекция, добавлен 29.09.2013

  • История развития представлений о функциональных зависимостях в точных и естественных науках. Формулировка определения Эйлера, Лобачевского и Дирихле. Рассмотрение основных видов функций в математике, изучение их свойств и применения, построение графиков.

    курсовая работа, добавлен 25.10.2023

Работы в архивах красиво оформлены согласно требованиям ВУЗов и содержат рисунки, диаграммы, формулы и т.д.
PPT, PPTX и PDF-файлы представлены только в архивах.
Рекомендуем скачать работу и оценить ее, кликнув по соответствующей звездочке.