Фракталы
Общее понятие о фракталах. Самоподобие как одно из основных свойств фракталов. Основные типы фракталов и их характеристики: геометрические, алгебраические и схоластические. Роль фракталов в современном мире, основные области и сферы их применения.
Подобные документы
- 101. Понятие синуса угла
Тригонометрия и сферы ее применения. Понятие, исторические сведения о возникновении и изучении синуса угла. Нахождение тригонометрических функций по единичной окружности. Определение связей синуса, косинуса, тангенса и котангенса со своими углами.
презентация, добавлен 13.11.2016 Математическое ожидание, дисперсия, коэффициенты корреляции - основные характеристики совместного распределения нескольких случайных величин. Специфические особенности применения теоремы умножения вероятностей для рассмотрения составных испытаний.
реферат, добавлен 05.12.2021Определение и условие существования определенного интеграла, геометрические приложения: длина дуги, объем тела, площадь поверхности. Физические приложения: работа переменной силы, давление жидкости; статические моменты и координаты центра тяжести.
контрольная работа, добавлен 12.06.2012Основные уравнения для решения постановки пространственных нестационарных задач теории термоупругопластичности. Геометрические соотношения и определяющие уравнения, описывающие неизотермические процессы нагружения с учетом траектории деформирования.
статья, добавлен 29.11.2016История появления геометрии, происхождение термина. Познания в этой науке древних греков, развитие знаний в Вавилоне, Китае, Египте. Вклад в развитие геометрии Евклида. Основные понятия планиметрии. Построение и измерение углов, действия над ними.
практическая работа, добавлен 29.01.2012Понятие математических матриц, источники их формирования и развития в науке. Основные элементы и их взаимодействие. Описание действий с таблицами: сложение, вычитание, умножение между собой и на число. Рассмотрение свойств транспортированных матриц.
презентация, добавлен 23.12.2013Математика как наука о количественных отношениях и пространственных формах действительного мира. Этапы развития математики. Использование в математике двух видов умозаключений: дедукции и индукции. Роль математики в различных областях деятельности.
реферат, добавлен 18.06.2012Изучение биографии Николая Ивановича Лобачевского - выдающегося российского математика. Геометрические исследования ученого по теории параллельных линий. Создание учебников по элементарной математике и алгебре. Основные аксиомы геометрии Лобачевского.
презентация, добавлен 24.02.2014Возникновение, становление и современное понятие о статистике. Статистико-математическое направление статистической науки. Использование науки в античном, древнем и современном мире. Статистика как совокупность сведений о массовых явлениях и их законах.
реферат, добавлен 05.04.2011- 110. Алгебраические числа
Теория чисел как непосредственное развитие арифметики, краткий исторический очерк. Понятие числового поля и алгебраического числа. Доказательство теоремы Лиувилля о приближении алгебраических чисел. Подтверждение существования трансцендентных чисел.
контрольная работа, добавлен 30.10.2010 - 111. Оригами и геометрия
Общее понятие об оригами, его применение в различных сферах жизни: для украшения праздничного стола, упаковки подарков и создания одежды. Методы решения задач с помощью оригаметрии. Основные аксиомы, доказательство теорем и примеры решения задач.
презентация, добавлен 16.01.2017 - 112. Степенные функции
Общее понятие о степенных функциях, их свойства и основные черты. Разновидности графиков степенных функций: прямая, парабола, кубическая парабола, гипербола. Особенности функций с четным и нечетным числом. Преобразования графиков степенных функций.
презентация, добавлен 02.03.2012 Формализованные методы описания и исследования систем. Понятия и определения графов, способы их задания и типы. Применение графов для исследования систем, построение и преобразования их структуры. Случайные события и величины, их основные характеристики.
курсовая работа, добавлен 21.01.2016Способы задания дискретной случайной величины. Изучение основных свойств функции распределения. Вероятность того, что непрерывная случайная величина примет одно определенное значение. Плотность распределения вероятностей непрерывной случайной величины.
презентация, добавлен 08.12.2014- 115. Плоские кривые
Понятие кривой. Вычисление кривизны плоской кривой, ее радиус, круг. Алгебраические и трансцендентные кривые. Класс алгебраической кривой: парабола, гипербола, эллипс. Кривые 3 и 4 порядка. Параметрические уравнения циссоиды и астроиды. Свойства эволюты.
курсовая работа, добавлен 17.08.2010 Развитие землемерения, астрономии и строительного дела как одни из причин возникновения тригонометрии. Характеристика ключевых свойств тригонометрических функций. Синус - отношение противолежащего катета к гипотенузе. Основные формулы двойного угла.
презентация, добавлен 03.04.2015История возникновения понятий шара и шаровой (сферической) поверхности, их определение как геометрических фигур. Рассмотрение уравнения сферы и основных геометрических формул (площади сферы, объема шара, площади сегмента сферы). Теоремы и доказательства.
реферат, добавлен 02.04.2012- 118. Квадратные корни
Изучение правил действий с квадратными корнями и способов преобразования выражений с квадратными корнями. Квадратный корень из числа, его вычисление, геометрические приложения и основные тождества. Квадратный корень из произведения, дроби и степени.
реферат, добавлен 06.03.2010 Установление возникновения необходимости извлекать квадратные корни из отрицательных чисел. Особенности использования аппарата комплексных чисел. Основные понятия и арифметические действия над ними. Определение основных свойств операции сопряжения.
реферат, добавлен 03.11.2015Определение свойств неопределенного интеграла. Рассмотрение таблицы основных неопределенных интегралов. Характеристика методов интегрирования тригонометрических и гиперболических функций: замены переменной, подстановки и интегрирования по частям.
презентация, добавлен 26.09.2017- 121. Степенная функция
Исследование зависимости свойств и графика степенной функции от свойств степени с действительным показателем. Характеристика области определения, множества значений, функции на промежутке. Определение показателей с натуральным, четным и нечетным числом.
презентация, добавлен 02.03.2012 Поле как множество, содержащее не менее двух элементов, на котором заданы две бинарные алгебраические операции – умножение и сложение. Варианты построения множества рациональных чисел. Элементарное понятие о дробном числе. Введение правил сравнения.
методичка, добавлен 17.09.2014Понятие и общая характеристика, а также отличительные свойства и признаки аксонометрической проекции как способа изображения геометрических предметов на чертеже при помощи параллельных проекций, их разновидности. Основные типы и формы искажений.
презентация, добавлен 26.04.2014Характеристика главных способов задания функции: табличная, аналитическая. Сущность области определения и предел функции двух переменных. Основные правила нахождения пределов. Непрерывность функции двух переменных, описание свойств и определений.
лекция, добавлен 29.09.2013История развития представлений о функциональных зависимостях в точных и естественных науках. Формулировка определения Эйлера, Лобачевского и Дирихле. Рассмотрение основных видов функций в математике, изучение их свойств и применения, построение графиков.
курсовая работа, добавлен 25.10.2023