История развития системы счисления
Зарождение счета в глубокой древности. Появление систем счисления. Исследование процесса формирования понятия натурального числа. Вавилонские клинописные обозначения числа. Создание счетных приборов. Осознание людьми бесконечности натурального ряда чисел.
Подобные документы
Загальні відомості про числа Фібоначчі. Означення та основні властивості чисел Фібоначчі. Метод математичної індукції і числа Фібоначчі. Взаємозв'язок чисел Фібоначчі з золотим перетином. Застосування чисел та золотої пропорції в різних галузях.
курсовая работа, добавлен 12.11.2018Общее понятие и признаки комплексного числа. Тригонометрическая форма комплексного числа. Произведение двух комплексных чисел, формула его вычисления. Корни n-ой степени комплексного числа. Действительная и комплексная степень комплексного числа.
реферат, добавлен 21.08.2017Понятие рекуррентной нерекуррентной формул. Некоторые свойства чисел последовательности Фибоначчи. Система счисления, основанная на числах Фибоначчи. Схема прибавления, принцип перехода к следующей последовательности. Числа Каталана, элементы массива.
презентация, добавлен 26.09.2017Составление уравнения и определение его корней. Натуральные решения уравнения, доказательство гипотезы Била. Представление натурального числа по формуле остатков от деления целого числа на данное натуральное. Использование формулы для суммы кубов.
статья, добавлен 03.03.2018- 80. Комплексні числа
Поняття про спряжені комплексні числа та протилежні числа. Розв’язування квадратних рівнянь з від’ємним дискримінантом. Закони множення для дійсних чисел: переставний і сполучний. Приклади додавання, віднімання, множення та ділення комплексних чисел.
реферат, добавлен 07.10.2010 Подобие цифр у древних людей. Римская система нумерации. Возникновение и особенности написание арабских цифр. Буквенное обозначение чисел у славянских народов. Десятичная и двоичная системы счисления. Таблицы сложения и умножения для однозначных чисел.
творческая работа, добавлен 04.02.2014Адитивні проблеми теорії чисел й дільників. Метод оцінок тригонометричних сум. Проблема дільників Титчмарша. Подання натуральних чисел у вигляді суми двох квадратів та єдиність такого подання. Подання натурального числа у вигляді суми чотирьох квадратів.
курсовая работа, добавлен 09.04.2015Алгоритм построения графов сочетаний простых делителей. Структура графов первой и второй версий. Составление таблиц факторизаций на любом отрезке натурального ряда и установление закона распределения простых чисел. Элементарные методы в теории чисел.
статья, добавлен 26.05.2017Числа, сравнимые по модулю третьего натурального числа. Краткая характеристика особенностей и недостатков сравнения, сложения, умножения по ненулевому рациональному модулю. Доказательство, что выражение является простым числом. Способы решения уравнений.
статья, добавлен 03.03.2018В работе описан метод факторизации чисел Мерсенна, разработанный на основе утверждения о делителях числа Mp: все простые делители числа Mp имеют вид 2p*k+1. Определено значение индекса n. Выполнена формализация определения простого числа Софи Жермен.
статья, добавлен 26.01.2020Комплексные числа были введены в математику для того, чтобы сделать возможной операцию извлечения квадратного корня из любого действительного числа. Свойства комплексных чисел. Описание действий с ними. Основная теорема алгебры. Модуль комплексного числа.
реферат, добавлен 13.12.2022Отыскание простых множителей натурального числа. Известный алгоритм Евклида для отыскания наибольшего общего делителя двух чисел как прием факторизации. Факторизация по разности квадратов. Упрощение вычислений с помощью знаний признаков делимости.
статья, добавлен 15.09.2012Формулы сокращенного умножения и логарифмов. Наибольший общий делитель двух или нескольких натуральных чисел. Простые и составные числа. Модуль действительного числа, его свойства. Степень числа с рациональным показателем. Арифметический корень.
учебное пособие, добавлен 04.02.2012- 89. Числовые системы
Аксиоматическая теория натуральных чисел, рациональных, действительных, комплексных чисел и кватернионов. Характеристика рационального числа через его представление в виде десятичной дроби. Комплексные двойные и дуальные числа. Усиленная аксиома Кантора.
учебное пособие, добавлен 16.06.2015 История возникновения комплексных чисел, их общая характеристика. Действия над комплексными числами в алгебраической форме. Геометрическая интерпретация комплексного числа, его тригонометрическая, показательная форма. Применение комплексных чисел.
контрольная работа, добавлен 30.01.2010Последовательность и отличия арифметических действий с числами в различных системах счисления: двоичной, десятичной и шестнадцатеричной. Примеры сложения, вычитания, умножения и деления на основе переходов между разрядными слагаемыми многозначных чисел.
реферат, добавлен 01.02.2014Теория чисел как непосредственное развитие арифметики, краткий исторический очерк. Понятие числового поля и алгебраического числа. Доказательство теоремы Лиувилля о приближении алгебраических чисел. Подтверждение существования трансцендентных чисел.
контрольная работа, добавлен 30.10.2010- 93. Математика ЕГЭ
Свойства делимости целых чисел. Сущность канонического разложения. Факториал, сумма делений натурального числа. Характеристика алгоритма Евклида. Основные факторы делимости и восстановление цифр. Понятие малой теоремы Ферма. Целые рациональные выражения.
учебное пособие, добавлен 12.09.2013 Основы алгебры логики, понятие и типы системы счисления. Применение двоичной, восьмеричной и шестнадцатеричной систем счисления в современной цифровой схемотехнике. Способы описания логической функции, алгебраические выражения и таблицы истинности.
реферат, добавлен 27.06.2015Реализация устройств с каскадным счетом. Отказ от принципа использования двоичной системы счисления. Использование биноминальных матриц в области цифрового электронного счета и надежного кодирования информации. Специфика перехода из разряда в разряд.
статья, добавлен 26.10.2010История открытия алгебраических чисел: действительного числа и мнимой единицы. Открытие метафизиком Смирновым В.В. еще двух алгебраических чисел: доказательства, расчеты, научное обоснование. Полезность данного открытия на примерах решения уравнений.
научная работа, добавлен 30.04.2014Особливість визначення поняття числа та видів числових множин. Досліджень чисел, які входять до множини цілих, раціональних та дійсних чисел. Розгляд різниці записів у вигляді нескінченного десяткового дробу раціонального та ірраціонального чисел.
разработка урока, добавлен 08.06.2019Перевод числа из десятичной системы счисления в двоичную, восьмеричную и шестнадцатеричную. Процесс перевода и выполнение проверки. Расчет по формуле полинома. Составление схемы на логических и релейных элементах. Проверка по таблице истинности.
контрольная работа, добавлен 12.07.2015Математические представления евреев в библейскую эпоху. Изобретение алфавитного принципа обозначения чисел. Особенности позиционной системы счисления в Древней Индии, некоторые имена и книги индийских математиков. Достижения китайских математиков.
реферат, добавлен 16.12.2012Число как основное понятие математики. Натуральные числа и их функции. История происхождения дробей в Древней Греции, Египте, Риме, Руси. Развитие идеи отрицательного количества в Европе. Определение действительных рациональных и иррациональных чисел.
реферат, добавлен 15.12.2016