Узагальнена еквівалентність матриць і їх наборів та факторизація матриць над кільцями
Опис класів, розкладених на унітальні множники матричних многочленів. Оцінка числа дільників та факторизацій матричних многочленів. Розклад матричних многочленів у добуток довільного числа унітальних нерозкладних множників, зокрема, у їх добуток.
Подобные документы
Дослідження параметризованої множини інтервальних методів без обертань інтервальних матриць для знаходження всіх дійсних розв’язків систем алгебричних та трансцендентних рівнянь у заданому початковому інтервалі. Основні умови реалізації методів.
статья, добавлен 30.01.2017Множина псевдорозв’язків систем блочних лінійних алгебраїчних рівнянь, прямокутні блоки-матриці яких поширюються в горизонтальному, вертикальному та горизонтально-вертикальному напрямках задану кількість разів. Результати псевдообернення матричних рядків.
автореферат, добавлен 05.01.2014Викладення покрокового процесу розв’язання зрізаної індефінітної проблеми моментів. Функції узагальненого класу Неванлінни. Огляд властивостей узагальнених матриць Якобі, які відповідають покроковому процесу розв’язання індефінітної проблеми моментів.
автореферат, добавлен 30.08.2014- 54. Протилежні числа
Методика формування уявлення про суть поняття "протилежні числа". Способи знаходження й правильного запису числа, протилежного до даного. Розв’язувати рівнянь, що передбачають застосування поняття числа, протилежного до даного. Приклади протилежних чисел.
конспект урока, добавлен 19.09.2018 Визначення поняття модулю числа та спосіб його позначення. Знаходження модулю додатного числа або 0, від'ємного числа. Чи може модуль якого-небудь числа бути від'ємним числом. Знаходження модулів двох протилежних чисел. Перевірка домашнього завдання.
конспект урока, добавлен 20.09.2018Скінченне розширення підгрупи, комутант якої міститься у її центрі. Конструктивний опис ненільпотентних об’єктів дослідження та нільпотентних об’єктів дослідження при умові, що їх фактори по комутантах є прямими добутками локально циклічних груп.
автореферат, добавлен 23.02.2014Адитивні проблеми теорії чисел й дільників. Метод оцінок тригонометричних сум. Проблема дільників Титчмарша. Подання натуральних чисел у вигляді суми двох квадратів та єдиність такого подання. Подання натурального числа у вигляді суми чотирьох квадратів.
курсовая работа, добавлен 09.04.2015Рассмотрение теоретико-множественного истолкования натурального числа и понятия преемственности. История формирования понятия натурального числа в начальной школе. Педагогические технологии формирования понятия натурального числа в современной школе.
реферат, добавлен 12.11.2016Повний опис дивізорів координатних функцій голоморфних майже періодичних відображень, що діють зі смуги у проективний простір. Неперервні відображення з Боровської компактифікації смуги на сферу Рімана. Добуток двох мероморфних майже періодичних функцій.
автореферат, добавлен 25.06.2014Узагальнення результатів про примарні розклади ідеалів та модулів на диференціальний випадок та теоретико-скрутову ситуацію. Опис скрут Бленда над некомутативними диференціальними кільцями. Вирішення проблеми про аксіоматизовність класу кілець Прюфера.
автореферат, добавлен 29.08.2015Анализ изучения важнейшей математической константы, которая выражает отношение длины окружности к ее диаметру. Практическое применение числа "Пи". Проведение исследования современных представлений о культуре. Взаимосвязь пирамиды Хеопса и числа "Пи".
презентация, добавлен 05.11.2019- 62. Дійсні числа
Раціональні числа як нескінченні десяткові періодичні дроби. Особливості основних теорем для розширення множини раціональних чисел. Ірраціональне число як нескінченний неперіодичний десятковий дріб. Модуль дійсного числа, характеристика його властивостей.
курсовая работа, добавлен 15.06.2016 - 63. Комплексні числа
Піднесення комплексного числа до цілого додатного степеня за допомогою формули бінома Ньютона. Закономірності та головні етапи добування кореня з комплексного числа. Умови рівності двох комплексних чисел, а також вимоги до їхніх модулів і аргументів.
контрольная работа, добавлен 16.07.2017 История введения в школьный курс математики темы "Иррациональные числа", краткая характеристика материала учебников данного периода. Исследование начальной информации про иррациональные числа и действия с ними. Извлечение числа из кубического корня.
статья, добавлен 11.10.2024- 65. Комплексні числа
Найпростіші застосування комплексних чисел. Спосіб Гамільтона введення комплексних чисел. Застосування комплексних чисел в геометрії. Формули Ейлера і Муавра та їх застосування. Комплексні числа в геометричних побудовах. Комплексні числа і центр мас.
реферат, добавлен 10.01.2009 Сравнение числа Пи с другими математическими величинами и их визуализация. Изучение методов использования компьютерных систем для интерпретации математических величин. Анализ возможности использования среды КСС "Demomod" при визуализации моделей числа.
статья, добавлен 22.01.2017- 67. Комплексні числа
Поняття про спряжені комплексні числа та протилежні числа. Розв’язування квадратних рівнянь з від’ємним дискримінантом. Закони множення для дійсних чисел: переставний і сполучний. Приклади додавання, віднімання, множення та ділення комплексних чисел.
реферат, добавлен 07.10.2010 Определение понятия "комплексные числа", их алгебраическая форма, вычисления суммы и произведения, основные этапы изучения. Тригонометрическая форма комплексного числа, его геометрическая модель. Основные действия: сложение, вычитание, умножение, деление.
презентация, добавлен 26.02.2015- 69. Фигурные числа
История возникновения фигурных чисел, их основные виды и свойства. Анализ возможностей применения фигурных чисел в повседневной жизни (в живописи, архитектуре, дизайне и других сферах). Центрированные полигональные числа и многомерные фигурные числа.
реферат, добавлен 17.06.2018 В работе описан метод факторизации чисел Мерсенна, разработанный на основе утверждения о делителях числа Mp: все простые делители числа Mp имеют вид 2p*k+1. Определено значение индекса n. Выполнена формализация определения простого числа Софи Жермен.
статья, добавлен 26.01.2020Роль числа в познании и конституировании мира. Число как основное понятие математики. Понятие натурального числа. Число как первая сущность, определяющая все многообразные внутрикосмические связи мира, основанного на мере, соразмерного и гармоничного.
доклад, добавлен 11.01.2012Формулы сокращенного умножения и логарифмов. Наибольший общий делитель двух или нескольких натуральных чисел. Простые и составные числа. Модуль действительного числа, его свойства. Степень числа с рациональным показателем. Арифметический корень.
учебное пособие, добавлен 04.02.2012- 73. Число е
Леонардо Эйлер как великий математик. Определение числа e, приближенное вычисление его значения, трансцендентность и экспоненциальная функция. Проявление числа e в реальной жизни и его практическое применение. Применение числа e в математических задачах.
курсовая работа, добавлен 15.05.2011 Ф. Беллар как один из ученых вычисливший число Пи с рекордной точностью. Личная жизнь Беллара и формула вычисления числа. Числа, которыми можно назвать и вычислить Пи: подходящие (приближенные) и десятичные дроби, заглавные латинские буквы и целые числа.
презентация, добавлен 27.04.2015- 75. Логарифм числа
Понятие логарифма как числа, применение которого позволяет упростить многие сложные операции арифметики. Основное логарифмическое тождество. Свойства десятичного и натурального логарифма. Расчет логарифма корня, который равен логарифму подкоренного числа.
контрольная работа, добавлен 28.10.2013