К определению положений звеньев пространственных механизмов
Исследование и обоснование эффективности метода определения положений звеньев механизмов с одно- и двухподвижными кинематическими парами. Определение положений фигур методом последовательных приближений, порядок проведения соответствующих расчетов.
Подобные документы
Новый метод решения уравнения Пелля и связанных с ним диофантовых уравнений. Примеры применения метода и сравнение по эффективности с циклическим методом. Использование фиксированного алгоритма циклического метода. Увеличение числа шагов цикла.
статья, добавлен 22.11.2018- 77. Числа Эйлера
Числа Эйлера первого порядка: определения, треугольник Эйлера. Рекуррентные формулы, дополнительные тождества. Связь натуральных степеней и последовательных биномиальных коэффициентов. Зеркальное отражение перестановки. Определение чисел Стирлинга.
реферат, добавлен 01.10.2013 Понятие и история развития геометрии как области научного знания, ее современные достижения и дальнейшие перспективы. Измерение площадей и используемые единицы измерения. Методы определения данного показателя: взвешивания, подсчета клеток, формула Пика.
научная работа, добавлен 03.05.2019Исследование действия законов Ома и Кирхгофа для электрических цепей. Рассмотрение расчетов линейных электрических цепей в установившемся режиме символическим методом. Определение частотных и временных характеристик линейных электрических цепей.
контрольная работа, добавлен 10.04.2018Ось симметрии как прямая, относительно которой данные фигуры симметричны. Равность симметричных фигур. Геометрическое построение симметричных фигур, совмещение передвижением по плоскости фигур. Симметричные фигуры в природе, строительстве и украшениях.
презентация, добавлен 26.04.2014Основные аксиомы стереометрии, правила пересечения плоскостей. Условия параллельности прямых и плоскостей. Особенности изображения пространственных фигур, построение проекции. Перпендикулярность прямых и плоскостей, углы и расстояния в пространстве.
реферат, добавлен 01.12.2010Уравнение Пелля как одно из наиболее изученных диофантовых уравнений. Использование алгебраических чисел и диофантовых приближений для решения уравнений. Нелинейные рекуррентные формулы для решений уравнения Пелля. Рекуррентная цепочка равенств.
реферат, добавлен 22.11.2018Анализ устойчивости метода типа Розенброка 3 порядка для систем дифференциальных уравнений с квадратичной правой частью. Коэффициенты, при которых численная схема является устойчивой. Использование результатов расчетов на реакции диметилкарбоната.
статья, добавлен 29.06.2018Характеристика определителя Вронского: определение, общая теория, свойства, примеры применения. Интегрирование неоднородных систем дифференциальных уравнений методом вариации произвольных постоянных: определения, общая теория метода, решение примеров.
курсовая работа, добавлен 22.04.2011Исследование системы на совместность методом Гаусса. Решение системы линейных алгебраических уравнений двумя методом Крамера и средствами матричного исчисления. Решение пределов, дифференциальных уравнений, определение производных функций и интегралов.
контрольная работа, добавлен 09.04.2012Аппроксимация данных заданной линейной зависимостью методом наименьших квадратов. Определение ее параметров. Нахождение точек экстремума функции с помощью метода множителей Лагранжа. Исследование функции на экстремум. Изменение диагонали прямоугольника.
контрольная работа, добавлен 19.05.2015Рассматривается применение неполиномиальных сплайнов минимального дефекта к задаче построения среднеквадратического приближения. Исследуются различные варианты оптимизации для решения методом релаксации возникающей в ходе построения приближения системы.
статья, добавлен 15.01.2019Основное содержание и подходы к решению задачи Коши. Принципы формирования численных методов, их типы: явные и неявные, одно- и многошаговые. Основные глобальные и локальные ошибки, возникающие при их применении. Выбор шага метода и его обоснование.
отчет по практике, добавлен 18.02.2019Определение понятий матрицы и ранга матрицы, а также описание алгоритма Гаусса. Анализ сути метода окаймляющих миноров. Характеристика алгоритма и пример вычисления ранга матрицы методом окаймляющих миноров. Анализ вычислительной сложности алгоритма.
курсовая работа, добавлен 17.03.2017Сущность и особенности начертательной геометрии. Первые идеи об ортогональном проецировании пространственных фигур на плоскость. Применение теории геометрических преобразований. История возникновения и развития начертательной геометрии в России.
реферат, добавлен 29.04.2018Основные соотношения метода резольвенты. Задача вычисления ИКФ определённых характеристическим многочленом гамильтоновой матрицы. Исследование развития идей эффективного вычисления ИКФ на основе частотного метода. Тестирование на САУ большой размерности.
статья, добавлен 09.02.2013Решение задачи Коши для дифференциальных уравнений методом Милна. Использование метода для систем уравнений первого порядка или приведенных к таким. Оценка устойчивости метода и числа шагов. Практическая сторона использования. Решение 30 примеров.
курсовая работа, добавлен 09.06.2014Уравнения, содержащие неизвестные в показателе степени. Использование метода приведения к одному основанию при решении показательных уравнений. Особенности решения уравнений методом оценки, графическим методом и методом введения новых переменных.
презентация, добавлен 27.05.2014Разработка метода математического моделирования и последующего синтеза сложной робототехнической системы, включающей двигатель, механизм передачи движения и систему управления с целью учета взаимодействия структурных элементов привода друг с другом.
автореферат, добавлен 15.02.2018- 95. Симплекс-метод
Порядок подготовки задачи к применению симплекс-метода: ее приведение к каноническому виду, определение начального неотрицательного базисного решения. Общая характеристика метода и демонстрация его применения на примере. Структура и содержание таблиц.
презентация, добавлен 21.09.2017 Вычисление площади плоских фигур при помощи интегралов. Нахождение объема тела, длины дуги, площади поверхности вращения. Определение статических моментов, центра тяжести плоских фигур, координат центра тяжести кривых с помощью определенного интеграла.
методичка, добавлен 14.12.2016Способы проведения расчетов в макроэкономических исследованиях. Группировка данных по факторному признаку. Определение моды и медианы ранжированных рядов. Построение графика изменения чистой прибыли. Расчет индексов средней производительности труда.
контрольная работа, добавлен 09.05.2019Методика решения задач линейного программирования графическим методом. В ограничениях задачи замена знаков неравенств на знаки точных равенств и построение соответствующих прямых. Оптимальное решение задачи, определение области допустимых решений.
статья, добавлен 15.07.2018Математические расчеты по финансовым операциям, в основе которых формулы расчетов платежей по банковскому кредиту, первых взносов по кредиту, линейным методом и методом погасительного фонда. Расчет стоимости ежегодного и полного обесценивания товара.
задача, добавлен 16.06.2009Розрахунок маршрутів доставки кореспонденції до даних пунктів. Необхідність визначення найкоротших маршрутів між будь-якими двома парами пунктів з метою економії власних затрат на транспортування. Алгоритм Флойда для знаходження всіх найкоротших шляхів.
задача, добавлен 08.08.2009