Об устранимости аксиомы индукции

Арифметическое доказательство формул, которые не содержат индивидных переменных. Определение синтаксического дерева. Характеристика свойств синтаксических деревьев. Некоторые свойства арифметических термов. Некоторые свойства арифметических выводов.

Подобные документы

  • Понятие и свойства тройных интегралов. Замкнутая и ограниченная область в пространстве. Вычисление интегральной суммы для функции и ее конечный предел, способы вычисления. Свойства и пути замены переменных. Нахождение площадей, ограниченных кривыми.

    презентация, добавлен 17.09.2013

  • Понятие планиметрии (свойства фигур на плоскости) и стереометрии (свойства фигур в пространстве). Виды стереометрических тел: конус, призма, цилиндр, параллелепипед. Характеристика аксиом стереометрии, их доказательство. Способы задания плоскостей.

    презентация, добавлен 13.04.2012

  • Характеристика понятия и сущности, способов задания, основных операций, свойств характеристических функций множеств. Изучение декартового произведения множеств, сравнение их мощности, описание формул включений и исключений. Метод математической индукции.

    лекция, добавлен 28.04.2015

  • Свойства теоретико-множественных операций. Способы задания бинарных отношений. Булевы функции одной и двух переменных. Двойственность и равнозначность формул булевой алгебры. Матричный способ задания конечного автомата. Анализ автоматов Мура и Мили.

    учебное пособие, добавлен 28.12.2013

  • Изучение свойств фигур на плоскости, основные понятия планиметрии и представления о геометрических телах. Основные свойства точек, прямых и плоскостей, касающиеся их взаимного геометрического расположения и их значения относительно плоскости в аксиоме.

    презентация, добавлен 13.04.2012

  • Геометрическое изображение функции двух переменных. Частные производные, их свойства и геометрический смысл. Предел и непрерывность функции нескольких переменных, их функции. Применение дифференциала к приближенным вычислениям, сложным функциям.

    курс лекций, добавлен 23.10.2013

  • Особенности метода математической индукции, его широкое применение при доказательстве теорем, тождеств, неравенств, к суммированию рядов, геометрическим задачам и задачам на делимость натуральных чисел. Примеры применения метода математической индукции.

    реферат, добавлен 15.12.2011

  • Определение логарифма, его основные свойства. Основное логарифмическое тождество. Десятичные и натуральные логарифмы. Логарифмическая функция, ее свойства и построение графика. Решение логарифмических уравнений и неравенств с помощью свойств логарифма.

    презентация, добавлен 25.11.2013

  • Применение формул Эйлера, Гаусса и Куммера для гипергеометрической функции. Свойства "золотого сечения", его роль в математике и в теории чисел. Доказательство лемм с помощью схемы Чудновского-Хаты для нахождения числового значения "золотого сечения".

    статья, добавлен 27.05.2018

  • Разработан подход к изучению устойчивости выводов в математических моделях. Введена система показателей устойчивости выводов, получаемых с помощью математических моделей. Они определяются с помощью метрики, псевдометрики или показателя различия.

    статья, добавлен 14.11.2020

  • Доказательство бесконечности регулярных простых чисел. Делимость числителей чисел Бернулли. Делимость чисел при сравнении по ненулевому рациональному модулю. Частные случаи делимости целых и дробных чисел. Простые числа в арифметических прогрессиях.

    статья, добавлен 03.03.2018

  • Определение инверсии как преобразования плоскости, её свойства. Построение инверсных точек. Рассмотрение всевозможных случаев построения образов прямых и окружностей при помощи инверсии. Применение данного метода при решении задач на доказательство.

    курсовая работа, добавлен 03.11.2018

  • Изложение понятия и физического смысла скалярного и векторного произведения векторов в системе координат. Изучение и доказательства их свойств. Приведение некоторых метрических формул. Вычисление площади параллелограмма, построенного на векторах.

    лекция, добавлен 26.01.2014

  • Описание средних величин, которые можно применять для анализа данных, измеренных в порядковой шкале, шкалах интервалов и отношений и некоторых других. Особенности применения средних порядковых шкал по Коши и средних арифметических по Колмогорову.

    статья, добавлен 19.01.2018

  • Обоснование необходимости знания основных элементарных функций, их свойств и графиков. Свойства постоянной функции. Корень n-ой степени. Свойства степенной функции с нечетным положительным показателем. Степенная функция с четным отрицательным показателем.

    контрольная работа, добавлен 30.11.2015

  • Использование формул комбинаторики при непосредственном вычислении вероятностей. Понятие и примеры перестановок, размещений и сочетаний. Выявление и оценка количества комбинаций, которые можно составить из элементов заданного конечного множества.

    презентация, добавлен 20.11.2011

  • Некоторые простейшие свойства линейных пространств, базис и координаты элементов линейного пространства. Критерий совместности общей линейной системы уравнений. Основные метрические понятия в евклидовом пространстве. Неравенство Коши-Буняковского.

    учебное пособие, добавлен 13.02.2016

  • Способы минимизации дифференцируемой функции нескольких переменных. Выработка сопряженных направлений и остановка после выполнения одной итерации. Результаты вычислений примеров методом Дэвидона–Флетчера–Пауэлла. Доказательство по индукции и дедукции.

    контрольная работа, добавлен 29.09.2013

  • Волновые системы - обобщения конвейеров, которые предназначены для распараллеливания серийных вычислений арифметических выражений. Маркированный граф - сеть Петри, в каждое место которой входит ровно одна дуга. Диаграмма маршрута волновой системы.

    статья, добавлен 29.01.2019

  • Понятие обыкновенных дифференциальных уравнений как уравнений, в которые входит независимая переменная и некоторые производные. Характеристика краевого условия, его функции. Место дифференциальных уравнений в частных производных и их определение.

    презентация, добавлен 30.10.2013

  • Описание особенностей непрерывных частных производных заданной функции. Определение полного дифференциала данной функции. Изучение формул, когда х и у были функциями одной переменной. Расчет коэффициентов при дифференциалах независимых переменных.

    реферат, добавлен 26.04.2014

  • Основные понятия теории графов. Свойства маршрутов, цепей, циклов. Понятие гамильтонова графа. Доказательство теоремы Дирака. Постановка задачи о коммивояжере и описание известных способов ее решения. Практические приложения задачи. Метод ветвей и границ.

    курсовая работа, добавлен 06.07.2014

  • Главные свойства деления и сравнения по ненулевому рациональному модулю четных чисел. Доказательство невозможности решения заданных уравнений в целых числах. Доказательство утверждения о том, что сумма двух простых нечетных чисел есть чётным числом.

    статья, добавлен 03.03.2018

  • Анализ функций, являющихся частными случаями степенной функции. Зависимость свойств и графика степенной функции от свойств степени с действительным показателем. Особенности видов степенной функции: графики, свойства, область определения, четность.

    презентация, добавлен 03.03.2012

  • Дерево как связный граф, не содержащий циклов. Перечень основных свойств деревьев. Общее понятие про орграф. Содержание теоремы А. Кэлли. Сущность понятия "подграф". Пример алгоритма построения каркаса в связном графе, особенности его обоснования.

    реферат, добавлен 18.04.2012

Работы в архивах красиво оформлены согласно требованиям ВУЗов и содержат рисунки, диаграммы, формулы и т.д.
PPT, PPTX и PDF-файлы представлены только в архивах.
Рекомендуем скачать работу и оценить ее, кликнув по соответствующей звездочке.