Дискретная математика
Основы теории множеств, переключательных функций, комбинаторного анализа и теории графов. Диаграммы Эйлера, операции над множествами. Бинарные отношения и отображения. Свойства элементарных булевых функций. Основные понятия и определения комбинаторики.
Подобные документы
- 51. Теория множеств
Применение теории множеств в различных разделах математики. Кардинальные числа и появление теории меры. Сравнительная количественная оценка множеств. Определение понятий длины, площади и объема в геометрии фигур. Развитие теории интеграла и рядов Фурье.
контрольная работа, добавлен 17.06.2014 Характеристика формальных описаний элементов и систем, которые опираются на язык теории множеств и графов. Особенности элементов множества - любых объективных и субъективных понятий, объединяемых в соответствии с некоторым законом, правилом, признаком.
контрольная работа, добавлен 14.09.2010Множества и операции над ними. Сходящиеся и монотонные числовые последовательности. Предел и непрерывность функции. Бесконечно малые и бесконечно большие функции. Раскрытие неопределенностей, замечательные пределы. Основные свойства непрерывных функций.
лекция, добавлен 29.09.2014- 54. Булевы функции
Понятие существенной и фиктивной переменной простых булевых функции функций. Суперпозиции и теория множеств. Нормальные формы и полиномы. Определение и характеристика классов Поста. Минимизация нормальных форм всюду определённых булевых функций.
курсовая работа, добавлен 05.12.2012 Определение основных понятий элементарной математики. Операции над множествами и законы для подмножеств: коммутативности (переместительный закон) и ассоциативности (сочетательный закон). Отображения, а также отношения эквивалентности и упорядоченности.
реферат, добавлен 17.01.2011- 56. Теория графов
Краткий перечень основных понятий теории графов как раздела дискретной математики. Понятия смежности и инцидентности. Матрицы смежности и инцидентности, достижимости и связности. Маршруты и пути. Применение методов теории графов в прикладных задачах.
методичка, добавлен 24.03.2015 Множество как одно из ключевых понятий математики, в частности, теории множеств и логики. Операции разности и дополнения и их антидистрибутивность относительно операций объединения и пересечения. Множества высших мощностей. Свойства операции объединения.
реферат, добавлен 20.09.2015- 58. Графы
Изучение истории возникновения теории графов, основные понятия и виды графов. Теория графов в транспортных, коммуникационных и геоинформационных системах. Применение теории графов в медицине, биологии, физике, химии, астрономии, истории, искусстве.
научная работа, добавлен 03.05.2019 Основы линейной, векторной алгебры, аналитической геометрии и математического анализа. Криволинейные и поверхностные интегралы, дифференциальные уравнения, элементы теории поля и теории функций комплексного переменного, основы операционного исчисления.
курс лекций, добавлен 19.11.2014Основные понятия и обозначения, связанные с множествами и операциями над ними. Формула мощности объединения нескольких множеств. Теорема Кантора-Бернштейна и ее доказательства равномощности. Бинарное отношение эквивалентности и порядка. Теорема Цермело.
курс лекций, добавлен 28.12.2013Определение элементарных функций. Область определения и значения функции. Основные простейшие элементарные функции: линейная, степенная, квадратичная, показательная, логарифмическая, тригонометрическая, oбратная тригонометрическая. Функция и её свойства.
реферат, добавлен 30.10.2010Изучение базовых понятий и определений; ознакомление с задачами, возникающими в теории графов и методами их решения. Освоение компьютерных способов представления графов и алгоритмов машинной обработки графов. Программные продукты для анализа графов.
контрольная работа, добавлен 13.04.2012Изучение математических моделей объектов, процессов и зависимостей, решаемых дискретной математикой. Анализ элементов теории множеств. Понятие и применение математической логики. Определение алгебраических операций. Теория графического представления.
учебное пособие, добавлен 19.12.2012Понятие и характерные свойства функционально полных систем булевых функций как совокупности таких функций (f1, f2,… fk), что произвольная булева функция f может быть записана в виде формулы через функции этой совокупности. Принцип ее двойственности.
реферат, добавлен 30.11.2014- 65. Теория графов
Первая работа по теории графов всемирно известного математика и механика Леонардо Эйлера. Построения электрических цепей и подсчёта химических веществ с различными типами молекулярных соединений. Становление кибернетики и развитие вычислительной техники.
реферат, добавлен 17.06.2014 - 66. Замкнутые классы
Класс булевых функций. Определение числа самодвойственных функций. Множество всех наборов длины по отношению к операции предшествования. Теорема о функциональной полноте. Понятия многозначной логики. Дистрибутивность операции max относительно min.
лекция, добавлен 18.10.2013 Изучение теории множеств, их включения и равенства. Характеристика математической логики и предела последовательности функций. Определения первообразных и неопределенных интегральных исчислений. Анализ векторных функций. Тригонометрическая система.
курс лекций, добавлен 29.05.2013Определение булевых функций. Замкнутые классы, теорема Поста. Моделирование релейно-контактных схем и сумматоров. Основные положения математической логики. Неформальное определение алгоритма. Конечные автоматы и некоторые классические алгоритмы.
учебное пособие, добавлен 30.07.2013- 69. Теория графов
История возникновения, сущность, основные понятия, виды, способы задания и характеристики вершин теории графов. Доказательство теоремы Эйлера об эйлеровых графах (критерия эйлеровости графа). Алгоритм решения задач изоморфизма. Понятие дерева и леса.
лекция, добавлен 11.02.2010 - 70. Теории множеств
Исследование теории графов в 30-е годы ХХ в. Двудольные графы и возможность их применения для наглядного представления паросочетаний. Изучение условия Холла. Трансверсали семейств множеств. Определение степени вершины. Паросочетания специального вида.
лекция, добавлен 29.09.2013 Предмет, определение, понятия и основные теоремы теории вероятности. Формулы комбинаторики, Байеса, Бернулли и полной вероятности. Классификация событий и операции над ними. Определение вероятности случайного события и повторных независимых испытаний.
контрольная работа, добавлен 01.04.2016Связь между понятиями аналитических и гармонических функций. Отличия отличной от постоянной гармонической функции, что не может достигать экстремума во внутренней точке области определения. Граничная теорема единственности теории аналитических функций.
курсовая работа, добавлен 14.06.2023Бинарные отношения в школьном курсе математики. Отношение как одна из форм всеобщей взаимосвязи всех предметов, явлений, процессов в природе, обществе и мышлении. Бинарные отношения: рефлексивность, симметричность, транзитивность, параллельность.
презентация, добавлен 23.01.2021История зарождения и развития комбинаторики, ее применение в теории вероятностей, криптографии, терминологии и математике. Биномиальные коэффициенты ("треугольник Паскаля"). Примеры комбинаторных конфигураций и задач. Правила сложения и умножения.
реферат, добавлен 12.11.2016Основные понятия теории графов. Экстремальные пути и контуры на графах. Характеристика особенностей алгоритма Форда. Основы решения задачи поиска контура минимальной длины. Аспекты применения алгоритма Форда-Фалкерсона в задаче о максимальном потоке.
статья, добавлен 13.01.2014