Выделение класса объекта по ряду признаков (кластеризация) с помощью нейронных сетей Кохонена

Разработка системы, производящей кластеризацию объектов по ряду признаков. Выявление кластеров (групп) входных векторов, обладающих некоторыми общими свойствами. Идея векторного квантования. Обучение сети Кохонена. Конкурирующая функция активации.

Подобные документы

  • Понятие искусственных нейронных сетей. Модель и архитектура технического нейрона. Обучение нейронных сетей. Основные функциональные возможности программ моделирования нейронных сетей. Однослойный и многослойный персептроны. Принцип работы сети Кохонена.

    дипломная работа, добавлен 19.11.2015

  • Обзор принципов организации и функционирования биологических нейронных сетей. Расширенная модель искусственного нейрона. Обучение нейронной сети. Алгоритм обратного распространения ошибки. Определение входного сигнала нейрона. Карты признаков Кохонена.

    курсовая работа, добавлен 04.12.2012

  • История возникновения, виды, свойства и обучение искусственных нейронных сетей. Технология самообучения и задачи, решаемые при помощи нейронной сети Кохонена. Ограничения, накладываемые на компьютерную имитационную модель, ее схемы в среде MatLab.

    дипломная работа, добавлен 12.01.2012

  • Рассмотрение существующих методов для оценки надежности. Оценка надежности сети на основе нейронных сетей. Архитектура нейронной сети Кохонена. Реализация алгоритма и программы оценки надежности телекоммуникационных сетей с помощью нейронных сетей.

    диссертация, добавлен 24.05.2018

  • Нейроны слоя Кохонена и генерация сигналов. Обучение слоя Кохонена. Присвоение начальных значений и метод выпуклой комбинации. Чувство справедливости. Коррекция весов пропорционально выходу. Аккредитация и интерполяция - режимы работы сети Кохонена.

    презентация, добавлен 16.10.2013

  • Структурные алгоритмы построения статических и динамических нейронных сетей. Многослойный персептрон с временными задержками и связанные с ним нейросетевые архитектуры. Динамическая кластеризация и сети Кохонена. Обзор итерационных методов обучения сетей.

    книга, добавлен 07.03.2014

  • Анализ принципов обучения нейронных сетей, их классификация. Описание алгоритмов обучения искусственных нейронных сетей: правило Хебба и Кохонена, дельта-правило, обратного распространения ошибки, стохастические алгоритмы, машины Больцмана и Коши.

    лекция, добавлен 21.09.2017

  • Изучение подходов к нормализации обучающего множества нейронной сети. Анализ существующих методов обучения нейронной сети Кохонена, их основные в преимущества и недостатки. Разработка нового конструктивного метода обучения на основе нейтронной сети.

    статья, добавлен 26.04.2019

  • Описание базовых задач для нейронных сетей и исторически первых методов настройки сетей для их решения: классификация (персептрон Розенблатта); ассоциативная память (сети Хопфилда); восстановление пробелов в данных; кластер-анализ (сети Кохонена).

    курсовая работа, добавлен 04.04.2009

  • Понятие и основные компоненты нейронных сетей, классификация образов. Обучение по алгоритму обратного распространения ошибок. Сети с радиальными базисными функциями. Кластеризация образов, самоорганизующаяся карта признаков. Дискретная сеть Хопфилда.

    книга, добавлен 18.01.2011

  • Разработка способов обеспечения достоверности информации баз данных. Описание метода определения достоверности вводимого кортежа. Параметры и характеристика нейронной сети Кохонена. Обучение радиально-базисной сети путём обратного распространения ошибки.

    статья, добавлен 29.05.2017

  • Изучение типологии нейронных сетей. Основные отличия от машин с архитектурой фон Неймана. Оценка процессов, протекающих в мозге человека. Разработка демонстрационной версии программы Neural Network Wizard, созданной на основе нейронной сети Кохонена.

    реферат, добавлен 13.04.2014

  • Классификация алгоритмов кластеризации. Создание самоорганизующихся нейронных сетей, являющихся слоем или картой Кохонена, в MATLAB NNT. Создание сети, правило настройки смещений, реализация циклов обучения. Моделирование кластеризации данных.

    курсовая работа, добавлен 22.06.2011

  • Характеристика классических методов кластеризации. Особенности самоорганизующихся карт Кохонена как одного из методов аппроксимации данных. Настройка веса на основе обучающего множества без учителя. Классический алгоритм "Победитель забирает все".

    статья, добавлен 02.11.2018

  • Классификация лесных пожаров с помощью многослойного персептрона. Кластеризация стихийного, неуправляемого распространения огня в лесу с помощью карт Кохонена. Математическая модель и программное проектирование системы оценки последствий пожара.

    курсовая работа, добавлен 04.02.2014

  • Современные методы оценки, применяемые в автоматизированных обучающих системах. Архитектура нечеткой нейронной сети Кохонена, алгоритм обучения. Принцип оценки обучаемого инженера на базе нечеткой нейронной сети Кохонена. Реализация разработанного метода.

    статья, добавлен 19.01.2018

  • Изучение способов поиска субоптимальных нейронных сетей. Архитектура системы поиска нейронной сети с помощью генетического алгоритма. Особенности работы операторов генетического алгоритма. Обучение нейронных сетей. Принципы стохастического моделирования.

    статья, добавлен 29.04.2017

  • Анализ способов полуконтролируемого обучения нейронных сетей векторного квантования, предназначенных для обработки больших массивов информационных данных. Методы последовательной обработки матриц изображений, их вычислительная простота и быстродействие.

    статья, добавлен 22.03.2016

  • Распознавание сетью структуры данных. Решение задач классификации в сетях Кохонена. Использование доверительных уровней (порогов принятия и отвержения) для интерпретации выходных значений в пакете ST Neural Networks. Границы диапазона для переменной.

    реферат, добавлен 21.10.2014

  • Специфіка методів та алгоритмів, які вдосконалюють процес самоорганізації карт Кохонена, візуалізація кластерної структури даних. Розробка багатопотокового алгоритму навчання карт Кохонена для організації ефективних обчислень на багатоядерних процесорах.

    автореферат, добавлен 18.07.2015

  • Нейронные сети и вычислительные системы на их основе. Алгоритмы генетического поиска для построения топологии и обучения нейронных сетей. Линейные преобразования векторов. Биологический нейрон и его строение. Признаковое и конфигурационное пространство.

    курс лекций, добавлен 17.01.2011

  • История развития нейронных сетей. Строение биологической нейронной сети. Искусственный нейрон. Общие положения и виды обучения нейронных сетей. Архитектура. Сети прямого распространения сигнала. Рекуррентные сети. Области практического применения.

    контрольная работа, добавлен 18.02.2018

  • Рассмотрение проблемы классификации сообществ в социальной сети. Применение рекуррентных и сверточных нейронных сетей для классификации групп пользователей по степени радикальности. Методы предварительной обработки данных для построения классификаторов.

    статья, добавлен 21.05.2021

  • Применение механизмов внимания к задаче обнаружения текста с использованием нейронных сетей, их влияние на результат работы сети. Механизм внимания, позволяющий сканировать значения признаков, фокусируя модель на действительно важных свойствах объекта.

    дипломная работа, добавлен 01.12.2019

  • Исследование применения классификации и анализа объектов на основе нейронных сетей в задачах распознавания объектов в видеопотоке. Разработка и реализация алгоритма обучения нейронных сетей для реализации механизмов классификации объектов в видеопотоке.

    дипломная работа, добавлен 10.12.2019

Работы в архивах красиво оформлены согласно требованиям ВУЗов и содержат рисунки, диаграммы, формулы и т.д.
PPT, PPTX и PDF-файлы представлены только в архивах.
Рекомендуем скачать работу и оценить ее, кликнув по соответствующей звездочке.