Метод найменших квадратів
Методи наближення функцій. Метод найменших квадратів як ефективний спосіб розв'язання задачі апроксимації функцій, його суть та основні формули. Лініалізація, розв’язання та побудова графіків функцій. Області застосування методу найменших квадратів.
Подобные документы
Розв'язок просторово-двовимірної задачі в рамках теоретичної лінійної схеми Біо шляхом застосування перетворення Лапласа за часом, комплексного перетворення Фур'є за просторовою координатою та методу послідовних наближень. Дія джерел пружних переміщень.
статья, добавлен 04.02.2017Вивчення застосування методу Фур'є до задач математичної фізики для гіперболічного рівняння. Дослідження оцінки розподілу супремуму розв'язання рівняння коливання струни та аналіз застосування отриманих результатів до моделювання розв'язання рівняння.
автореферат, добавлен 30.08.2014Матриця, її вектори, теорема Кронекера-Капеллі, метод Жордана–Гаусса. Дії з вектором. Дослідження функцій, їх диференціал, побудова графіків, екстремум. Основні методи інтегрування. Диференціальні рівняння. Ряди Фур'є. Елементи математичної економіки.
курс лекций, добавлен 27.05.2014Метод структурно-алфавітного пошуку розв’язання задач комбінаторної оптимізації. Розпізнавання структури вхідної інформації. Оцінка швидкодії, точності знаходження оптимального результату. Вивчення підкласів розв’язних задач, їх комбінаторна оптимізація.
статья, добавлен 23.02.2016- 80. Чисельні методі
Розв’язок рівнянь в програмному середовищі Maple. Аналіз особливостей розв’язання диференційних рівнянь і побудови графіків. Характеристика метода Гауса. Розв’язання рівняння за допомогою Метода Ейлера та Рунге-Кута. Отримання дійсних коренів рівняння.
контрольная работа, добавлен 28.04.2021 - 81. Симплекс-метод
Зміст і сутність методу розв’язання задач лінійного програмування за допомогою скерованого руху по опорних планах до знаходження розв’язку. Табличний, штучний та модифікований базис симплекс-методу. Розробка алгоритму математичної моделі завдання.
реферат, добавлен 15.03.2015 - 82. Компараторна структурно-параметрична ідентифікація моделей скалярного багатофакторного оцінювання
Метод компараторної ідентифікації як метод розв'язання загальної задачі структурно-параметричної ідентифікації моделей багатофакторного оцінювання. Модель розв'язку задачі структурно-параметричної ідентифікації в межах класу поліномів Колмогорова-Габора.
автореферат, добавлен 26.08.2015 Простори інтегрованих з вагою функцій. Отримання точних за порядком оцінок узагальнених констант Лебега сум Фур’є-Якобі. Теорема про наближення функцій алгебраїчними поліномами та знаходження порядків наближення функцій певних класів сумами Фур’є-Якобі.
автореферат, добавлен 30.07.2015Абстрактне параболічне рівняння. Умови секторіальності еліптичних операторів. Неперервний інтерполяційний метод. Умови існування та єдиності розв'язків задачі Коші. Типи в банаховому просторі. Диференціювання аналітичних функцій операторного аргументу.
автореферат, добавлен 13.07.2014Застосовування формул доповнення та числових значень тригонометричних функцій кутів до розв'язування задач. Особливості їх засвоювання учнями. Приклади усних вправ. Обчислення значень виразу без допомоги таблиць. Поняття стандартних і нестандартних задач.
конспект урока, добавлен 14.09.2018Обчислення заданої функції для проміжних значень аргументів за формулами Лагранжа. Виконання інтерполяції функції з використанням вбудованих сплайн-функцій пакета, що складається з кусків поліномів. Побудова графіків вихідної та інтерпольованої функцій.
лабораторная работа, добавлен 22.07.2017Здійснення постановки основної задачі розбиття і трасування з урахуванням просторової форми області як оптимізаційної задачі геометричного проектування, запропонованої Ю.Г. Стояном. Чисельна реалізація математичних моделей задач розбиття і трасування.
автореферат, добавлен 28.08.2015Асимптотичне дослідження раціональних функцій і побудова їх графіків за допомогою прямолінійних асимптот та асимптотичних кривих. Побудова графіку раціональної функції методами елементарної математики за допомогою асимптотичного дослідження функції.
научная работа, добавлен 25.11.2015Розглянуто особливості використання генетичного алгоритму (ГА) для розв’язання оптимізаційних задач. Наведено класифікацію оптимізаційних задач. Детально описано структурні елементи генетичного алгоритму та їх роль для розв’язання задачі комівояжера.
статья, добавлен 19.03.2024Розв’язання задачі Коші у просторах узагальнених функцій типу. Достатні умови, які повинна задовольняти початкова узагальнена функція. Побудова теорії задачі Коші для еволюційних рівнянь з оператором Бесселя нескінченного порядку в класах початкових умов.
автореферат, добавлен 13.07.2014Використання ідеї трикрокових алгоритмів, побудова нового варіанту трикрокового ітераційно-різницевого методу розв’язування задач безумовної мінімізації з кубічним порядком збіжності. Ефективність і можливість застосування запропонованого алгоритму.
статья, добавлен 30.01.2017- 92. Розділяюче перетворення і квадратичні диференціали в геометричній теорії функцій комплексної змінної
Розробка нових і вдосконалення вже існуючих методів для розв'язання класу екстремальних задач геометричної теорії функцій комплексної змінної, пов'язаних з отриманням точних оцінок зверху функціоналів на класах неперетинних областей або відкритих множин.
автореферат, добавлен 26.02.2015 - 93. Розділяюче перетворення і квадратичні диференціали в геометричній теорії функцій комплексної змінної
Розробка нових і вдосконаленню вже існуючих методів для розв'язання класу екстремальних задач геометричної теорії функцій комплексної змінної, пов'язаних з отриманням точних оцінок зверху функціоналів на класах неперетинних областей або відкритих множин.
автореферат, добавлен 28.09.2015 Аналіз підпросторів єдиності елемента найкращого наближення та несиметричного наближення для неперервних функцій у метриці L1. Єдиність елемента найкращого наближення дійснозначних неперервних функцій лінійними комбінаціями фіксованих базисних функцій.
автореферат, добавлен 06.07.2014Аналіз одного з прикладних методів апроксимації функції – метода Течера-Тьюкі на предмет його придатності до використання в обчислювальних задачах, наявність переваг перед іншими методами. Вимоги до обчислювальних алгоритмів. Метод обернених різниць Тіле.
контрольная работа, добавлен 08.10.2009- 96. Розв'язування задачі оптимального керування правою частиною неоднорідного бігармонічного рівняння
Дослідження задачі знаходження оптимальної функції правої частини неоднорідного бігармонічного рівняння, для розв'язування якої використовується один з варіантів градієнтного методу. Розв'язання системи інтегральних рівнянь Фредгольма першого роду.
статья, добавлен 27.09.2016 Встановлення властивостей запропонованих схем методу скінчених елементів з вибором координатних функцій для обраних крайових задач (задачі Діріхле для рівняння Пуассона, бігармонічної задачі з крайовими умовами). Характеристика ітераційних методів.
автореферат, добавлен 28.12.2015Класичні модулі неперервності першого і більш високих порядків. Основні структурні характеристики функцій. Розв‘язок інтегральних і диференціальних рівнянь. Прямі і обернені задачі апроксимації. Проблеми конструктивної теорії комплексної змінної.
автореферат, добавлен 28.07.2014Відокремлення коренів алгебраїчних та трансцендентних рівнянь. особливості графічного методу розв’язування рівнянь. Знаходження рішення способом пропорційних частин. Комбінований метод (метод дотичних і хорд), його специфіка. Приклади розв’язування задач.
курсовая работа, добавлен 18.12.2012Умови порушення єдиності розв’язку задачі Діріхле з комплексними матричними коефіцієнтами в просторах гладких функцій з поліноміальним ростом на нескінченності для диференціального рівняння другого порядку. Принципи однозначної розв’язності задачі Коші.
автореферат, добавлен 24.07.2014