Методы решения жестких краевых задач, включая новые методы и программы на С++ для реализации приведенных методов

Формула для вычисления вектора частного решения неоднородной системы дифференциальных уравнений. Программа на С++ расчета цилиндрической и сферической оболочки. Формула для начала счета методом прогонки С.К. Годунова. Программа на С++ расчета цилиндра.

Подобные документы

  • Определения и пример нахождения собственного значения и собственного вектора матрицы. Системы линейных алгебраических уравнений. Методы Зейделя и Якоби для решения систем линейных алгебраических уравнений. Программа на C++ для решения СЛАУ методом Якоби.

    курсовая работа, добавлен 23.04.2011

  • Программирование процесса определения погрешности значений функций, приближенного решения систем уравнений, аппроксимации функций, вычисления интегралов, численного интегрирования дифференциальных уравнений, используя среду разработки Borland Delphi.

    контрольная работа, добавлен 12.12.2012

  • Использование матричных уравнений в теории устойчивости движения, при решении дифференциальных уравнений Риккати и матриц Сильвестра. Формула неоднородного уравнения. Существенное отличие частного решения от конструкции в виде псевдообратного оператора.

    статья, добавлен 30.10.2016

  • Методика составления и решения системы линейных алгебраических уравнений, их графическое изображение. Теорема Кронекера-Канелли о признаках совместимости системы и ее доказательство. Метод Крамера и матричный метод решения неоднородной системы уравнений.

    контрольная работа, добавлен 26.07.2009

  • Описание результатов решения начальных и краевых задач с учетом неустранимой погрешности. Характеристика круга решаемых задач и преимуществ предложенных методов. Анализ значения учета погрешностей для решения задач повышения надежности устройств.

    статья, добавлен 24.07.2018

  • Сведение краевой задачи к задаче Коши. Поиск параметрического семейства решений для системы уравнений. Понятие уравнения "сшивания". Метод стрельбы для нормальной системы обыкновенных дифференциальных уравнений. Геометрическая интерпретация метода.

    курсовая работа, добавлен 22.04.2011

  • Понятие о теории устойчивости Ляпунова. Устойчивость линейной системы дифференциальных уравнений. Общие теоремы об устойчивости линейных систем дифференциальных уравнений. Применение теории устойчивости, методы решения задач об устойчивости движения.

    курсовая работа, добавлен 05.06.2014

  • Описание интерполирования методом Лагранжа. Интерполяционная формула Ньютона. Характеристика пользовательского интерфейса программной реализации рассматриваемых методов. Алгоритм вывода графика проинтерполированной функции. Информация о программе.

    контрольная работа, добавлен 23.04.2011

  • Общая постановка задачи решения обыкновенных дифференциальных уравнений. Метод Адамса для решения систем обыкновенных дифференциальных уравнений. Анализ погрешности, основные достоинства и недостатки метода Адамса решения дифференциальных уравнений.

    курсовая работа, добавлен 11.06.2014

  • Сущность метода половинного деления. Метод итерации как один численных методов решения математических задач, используемый для приближённого решения алгебраических уравнений и систем. Метод Ньютона как итерационный численный метод нахождения корня (нуля).

    реферат, добавлен 01.11.2019

  • Применение метода простых итераций и метода Ньютона для решения систем нелинейных уравнений. Интерполирование функций с помощью формулы Лагранжа. Способы вычисления однократных интегралов. Решение обыкновенных дифференциальных уравнений и систем.

    учебное пособие, добавлен 18.09.2012

  • Сущность линейных дифференциальных уравнений высших порядков. Характеристика однородных уравнения, основные свойства их решений. Определитель Вронского, его свойства. Линейная зависимость системы функций. Методы нахождения частного решения уравнения.

    курс лекций, добавлен 23.10.2013

  • Характеристика трех наиболее употребительных приближенных способов вычисления определенных интегралов в математике: методов прямоугольников, трапеций, парабол. Использование определенных формул для расчета их по числу значений подынтегральной функции.

    реферат, добавлен 02.09.2013

  • Методы решения нелинейных и дифференциальных уравнений и интерполяции функций. Численные методы решения некоторых математических и инженерных задач, программное обеспечение, их реализующее. Использование среды математического моделирования Matlab.

    курсовая работа, добавлен 09.02.2019

  • Изучение эволюции уравнений и их решений. Теории вычислений Древнего Египта, способы решения квадратных уравнений в Древнем Вавилоне и арабских странах. Кубические уравнения Греции, формула Тартальи–Кардано. Методы решения уравнений высоких степеней.

    курсовая работа, добавлен 22.05.2010

  • Задачи, приводящие к уравнениям гиперболического типа (колебания струны). Методы решения дифференциальных уравнений гиперболического типа. Дифференциальные уравнения параболического типа. Вывод уравнения дифракции излучения на сферической частице.

    дипломная работа, добавлен 27.02.2020

  • Использование системы MathCAD в исследовании математической модели колебательного движения системы с демпфером. Понятие математической модели и их классификация. Числовые методы решения дифференциальных уравнений. Функции дифференциальных уравнений.

    курсовая работа, добавлен 26.02.2012

  • Краткая характеристика, алгоритм, описание программы решения и результаты работы численных методов для задачи решения нелинейных уравнений: золотого сечения, дихотомии, простых итераций. Сравнение и анализ, преимущества и недостатки работы методов.

    контрольная работа, добавлен 09.01.2011

  • Обзор существующих методов решения нелинейных уравнений. Алгебраические и трансцендентные уравнения. Методы локализации корней. Алгоритм метода Ньютона. Численные методы решения нелинейных уравнений. Разработка и тестирование программного продукта.

    курсовая работа, добавлен 14.05.2014

  • Разновидность комбинаторных задач, их характеристика и специфика. Этапы приближенного решения нелинейных уравнений, графическое и аналитическое отделение корней. Описание и отличительные черты методов решения нелинейных уравнений, их применение.

    курсовая работа, добавлен 14.03.2015

  • Ознакомление с процессом приближенного решения с помощью степенных рядов. Рассмотрение численного решения методом Эйлера и Рунге-Кутты. Исследование порядка вычисления абсолютной и относительной погрешности. Изучение совместного графического решения.

    контрольная работа, добавлен 15.01.2018

  • Аналитические методы решения уравнений математической физики в частных производных. Численные методы решения уравнений матфизики. Дискретизация расчетной области, формирование матрицы неизвестных температур системы линейных уравнений, построение изотерм.

    курсовая работа, добавлен 01.04.2022

  • Краевая задача для уравнения эллиптического типа. Вариационные постановки основных эллиптических задач. Прямые методы вариационного исчисления. Неединственность решения дифференциальных уравнений. Граничное условие первого, второго и третьего рода.

    курсовая работа, добавлен 08.10.2013

  • Решение систем линейных алгебраических уравнений, методы Гаусса и Зейделя. Схемы частичного и полного выбора, приведение системы к виду, удобному для итераций. Сравнение прямых и итерационных методов. Программа решения системы линейных уравнений.

    контрольная работа, добавлен 07.05.2009

  • Описание численных методов решения алгебраических и дифференциальных уравнений. Использование языка программирования Visual Basic для реализации алгоритмов. Определение корней уравнения методом хорд и касательных. Аппроксимация и интерполяция функций.

    учебное пособие, добавлен 22.05.2014

Работы в архивах красиво оформлены согласно требованиям ВУЗов и содержат рисунки, диаграммы, формулы и т.д.
PPT, PPTX и PDF-файлы представлены только в архивах.
Рекомендуем скачать работу и оценить ее, кликнув по соответствующей звездочке.