Задача Коші для еволюційних рівнянь з оператором диференціювання нескінченного порядку
Задачі Коші в класах початкових умов, які є узагальненими функціями з просторів і дослідженню властивостей фундаментального розв’язку. Простори основних та узагальнених функцій і властивості перетворення Фур’є, згорток, згортувачів та мультиплікаторів.
Подобные документы
- 26. Математичне та комп'ютерне моделювання фотохімічних процесів та визначення їх кінетичних параметрів
Розробка підходу для вибору межі локальної похибки методу чисельного розв'язання задач Коші, яка забезпечує отримання такого чисельного розв'язку, що зберігає фізичний зміст. Розв'язання задачі ідентифікації параметрів фотохімічного експерименту.
автореферат, добавлен 27.08.2014 Дослідження особливостей узагальненого методу відокремлення змінних задач з локальними багатоточковими умовами за часом і задач Коші для полілінійних диференціальних рівнянь та полілінійних систем диференціальних рівнянь із частинними похідними.
автореферат, добавлен 15.07.2014- 28. Задачі для гіперболічних систем першого порядку та ультрапараболічних систем у необмежених областях
Визначення умов існування та єдиності розв'язку задачі без початкових умов для системи напівлінійних гіперболічних рівнянь першого порядку. Умови коректності задачі в обмеженій області для систем гіперболічних варіаційних нерівностей першого порядку.
автореферат, добавлен 29.07.2014 Прямі лінійні, обернені нелінійні задачі. Початково-крайові для рівнянь параболічного та гіперболічного типів, включаючи векторний випадок (рівняння Нав'є-Стокса). Задачі реконструкції включення в обмеженому тілі за відомими даними Коші на границі тіла.
автореферат, добавлен 29.07.2014Системи рівнянь, основні граничні та початкові умови що описують малі потенціальні рухи рідини поблизу рівноважного стану в лінійному наближенні. Методи оптимально-диференціального формулювання еволюційної задачі. Узагальнений розв`язок задачі Коші.
статья, добавлен 30.10.2016- 31. Нелокальна крайова задача для диференціального рівняння з частинними похідними у комплексній області
Дослідження нелокальної крайової задачі для рівняння з частинними похідними з оператором узагальненого диференціювання, який діє на функції скалярної комплексної змінної. Доведення теореми єдиності та теореми існування розв'язку задачі у просторі.
статья, добавлен 25.03.2016 Оцінка ефективності явних обчислювальних схем числового розв’язку задачі Коші для звичайного диференціального рівняння. Рекомендації щодо ефективного застосування методу диференціально-тейлорівських перетворень для числового інтегрування рівнянь.
статья, добавлен 29.07.2016Встановлення умови коректності динамічних крайових задач без початкових умов для еліптичних, параболічних і еліптико-параболічних рівнянь, абстрактних неявних еволюційних вироджених рівнянь, неявних еволюційних субдиференцiальних та параболічних включень.
автореферат, добавлен 14.07.2015Встановлення умов глобальної розв’язності та нерозв’язності задачі Коші для виродного параболічного рівняння з нелокальним джерелом. Аналіз визначення початкових функцій, що повільно спадають до нуля та містять нелокальний множник у від’ємному степені.
автореферат, добавлен 28.10.2015Доведення однозначної розв’язності задач про визначення пари функцій. Пошук похідної дробового порядку. Обернені крайові задачі для дифузійно-хвильового рівняння з узагальненими функціями в правих частинах. Векторна функція скалярного аргументу.
статья, добавлен 25.03.2016Розгляд питання про побудову головного члена двофазового асимптотичного солітоноподібного розв'язку задачі Коші для сингулярно збуреного рівняння Кортевега-де Фріза зі змінними коефіцієнтами у загальному випадку. Опис множини початкових значень.
статья, добавлен 04.02.2017Знаходження умов існування та єдиності розв'язків деяких типів параболічних варіаційних нерівностей та їх систем без початкових умов. Вивчення узагальнених просторів Соболєва. Отримано розв'язок в класі функцій, які можуть зростати у задачах Фур'є.
автореферат, добавлен 27.04.2014Розробка ортогонального підходу до побудови теорії узагальнених функцій нескінченного числа змінних. Вивчення їх властивостей, побудова операторів зсуву на просторах. Застосування ортогонального підходу до вивчення пуассонового аналізу білого шуму.
автореферат, добавлен 11.08.2014Вивчення основ розв’язування систем однорідних рівнянь з сталими коефіцієнтами методом Ейлера та матричним методом, доведення теорем та виведення закономірностей. Властивості розв’язків лінійних неоднорідних систем. Особливості рішення задач Коші.
реферат, добавлен 19.11.2009Неперервність за Гельдером розв’язків достатньо широкого класу квазілінійних параболічних рівнянь. Універсальні оцінки розв’язку задачі Коші для рівняння поблизу часу загострення. Значення, специфіка та характеристика критичних показників типу Фуджити.
автореферат, добавлен 29.08.2015Отримання формули Коші для зображення розв'язків лінійного неоднорідного стохастичного диференціального рівняння з інтегралом Скорохода та її застосування. Аналіз застосування формули Коші для лінійних неоднорідних стохастичних диференціальних рівнянь.
статья, добавлен 04.02.2017Розробка і застосування методики дослідження обернених задач, що базується на зведенні обернених задач до систем операторних рівнянь другого роду і аналізі методу параметрикса. Дослідження нехарактеристичної задачі Коші для рівняння теплопровідності.
автореферат, добавлен 15.11.2013- 43. Розв’язність початкової задачі для позитивних систем лінійних функціонально-диференціальних рівнянь
Доведення теорем про пов’язані з лінійною задачею Коші функціонально-диференціальні нерівності. Отримання ряду умов, які гарантують однозначну розв’язність початкової задачі для систем лінійних функціонально-диференціальних рівнянь загального вигляду.
автореферат, добавлен 29.07.2014 Знайомство з властивостями розв’язків вироджених диференціальних рівнянь вищих порядків з обмеженнями на резольвенту поліноміального жмутка операторів. Аналіз підпростору розв’язків задачі Коші для виродженого диференціального рівняння вищого порядку.
автореферат, добавлен 28.12.2015Поняття звичайного диференціального рівняння, існування та єдність його розв'язку. Метод ламаних Ейлера. Наближене розв'язання диференціального рівняння І порядку. Загальний розв'язок рівняння у'=у+3 і задача Коші для рівняння з початковою умовою: у(0)=1.
контрольная работа, добавлен 06.10.2010Способи вдосконалення методу Ейлера. Розгляд принципу побудови модифікованого методу Ейлера, його суть в обчисленні значень диференціального рівняння (ДР). Значення методу Рунге-Кутта для розв’язання ДР першого порядку, розв’язання задачі Коші для нього.
контрольная работа, добавлен 30.04.2018Побудова теорії розв’язності і обґрунтування проекційних методів розв’язання СІР та їх систем з ядром Коші та зі зсувом Карлемана. Підрахунок точної кількості лінійно незалежних розв’язків лінійних однорідних СІР зі зсувом Карлемана та їх систем.
автореферат, добавлен 12.07.2014Вивчення в повних банахових шкалах еліптичної, еліптичної з параметром і параболічної задачі Соболева для одного рівняння і для загальних систем. Умови існування узагальненого розв’язку і доведення теореми про повний набір ізоморфізмів, їх застосування.
автореферат, добавлен 22.02.2014Встановлення умов існування та єдиності локального та глобального узагальнених розв'язків гіперболічних задач Стефана для систем рівнянь першого порядку з двома незалежними змінними. Удосконалення теорії диференціальних рівнянь з частинними похідними.
автореферат, добавлен 28.10.2015Характеристика умов наявностi властивостей iнерцiї та зменшення розмiрiв носiя. Вивчення стартовиго руху носiя розв’язку в залежностi вiд локальних властивостей початкової функцiї. Аналіз локалiзацiї та обмеженостi розв’язків задачі Коши-Неймана.
автореферат, добавлен 11.11.2013