Регрессионный анализ
Применение регрессионного анализа для моделирования и изучения данных в математической статистике. Оценивание коэффициентов регрессии с помощью метода наименьших квадратов. Составление алгоритма регрессионного анализа линейного уравнения в Mathcad.
Подобные документы
Оценка коэффициентов парного уравнения регрессии. Анализ графиков, отражающих зависимости между результативным показателем и факторными признаками. Изображение эллипсов рассеяния. Обзор особенностей заполнения матрицы парных коэффициентов корреляции.
лабораторная работа, добавлен 11.11.2017Вероятностное обоснование МНК (метода наименьших квадратов) как наилучшей оценки. Принцип максимального правдоподобия, регрессия. Метод решения: минимизация невязки с привлечением методов матричного исчисления. Доверительные интервалы для оценок МНК.
презентация, добавлен 06.08.2015Статистические и вычислительные последствия мультиколлинеарности. Ее влияние на регрессию. Результаты статистического анализа в выборе переменной. Классификация их перечня по приоритетам. Проблема неправильного выбора модели регрессионного анализа.
реферат, добавлен 29.09.2013Математические методы систематизации, обработки и использования статистических данных для научных выводов. Генеральная и выборочная совокупность статистических данных. Способы группировки статистических данных. Корреляционный и регрессионный анализ.
реферат, добавлен 29.11.2014Ортогональное вращение Гивенса и преобразование Хаусхолдера. Последовательность нахождения сингулярного разложения матриц. Описание числа обусловленности. Нормы в пространстве векторов и матриц. Использование разложения в методе наименьших квадратов.
дипломная работа, добавлен 26.02.2020Составление линейной функции и решение системы из двух уравнений с двумя неизвестными. Формулы для нахождения коэффициентов по методу наименьших квадратов. Зависимость для показательной, линейной и квадратичной функций, их построение. Частные производные.
контрольная работа, добавлен 29.03.2013Механизм расчета выходного показателя по заданным управляющим факторам для имитации установки с использованием математической модели. Анализ ортогонального композиционного плана второго порядка для нормированных переменных и реальных значений факторов.
контрольная работа, добавлен 18.07.2017Характеристика моделей дисперсионного анализа с фиксированными уровнями факторов. Анализ статистических данных. Определение среднего арифметического урожайности. Рассмотрение схемы однофакторного дисперсионного анализа. Изучение метода нулевых гипотез.
контрольная работа, добавлен 19.04.2015Применение классической модели регрессии для анализа однородных объектов. Разделение территории на зоны, определение административных границ. Использование методов движущегося окна, фиксированных и адаптивных ядер при вычислении весовых коэффициентов.
статья, добавлен 24.02.2019Обзор основных понятий и методов, являющихся базисом структурного моделирования и применяемых при обработке данных. Числовые характеристики распределений. Основы математической статистики. Процедуры применения методов многомерного анализа и моделирования.
учебное пособие, добавлен 29.05.2012Определение и проверка значения коэффициентов уравнения регрессии. Число степеней свободы в дисперсии адекватности. Получение уравнения регрессии 1 и 2 порядка в результате планирования и постановки эксперимента с учетом математических преобразований.
курсовая работа, добавлен 30.05.2018Последовательность и вид многочленов на конечной степени точек в частных случаях. Сила нормированности. Определение коэффициентов Фурье. Применение метода наименьших квадратов. Ортогональные многочлены системы. Интерполяционный многочлен Лагранжа.
контрольная работа, добавлен 20.05.2013Понятие математической модели, ее основные свойства. Описание методов аппроксимации, применяемых для построения регрессионных математических моделей. Обзор основных функций системы MathCad. Алгоритмический анализ задачи и описание функционирования.
курсовая работа, добавлен 09.12.2013Аппроксимация данных заданной линейной зависимостью методом наименьших квадратов. Определение ее параметров. Нахождение точек экстремума функции с помощью метода множителей Лагранжа. Исследование функции на экстремум. Изменение диагонали прямоугольника.
контрольная работа, добавлен 19.05.2015Расчет линейного коэффициента парной корреляции, коэффициента детерминации и ошибки аппроксимации. Определение значимости параметров регрессии с помощью F-критерия Фишера и t-критерия Стьюдента. Скорректированный коэффициент множественной детерминации.
контрольная работа, добавлен 27.04.2017Исходные данные для поиска уравнения регрессии, учет свободного члена. Расчет коэффициентов регрессии и корреляции. Интервальная оценка для коэффициента корреляции (доверительный интервал). Заметное отклонение некоторых значений от линии регрессии.
практическая работа, добавлен 31.10.2014F критерий Фишера как параметр оценки качества регрессии. Пример дисперсионного анализа результатов регрессии. Оценка значимости коэффициентов регрессии и корреляции. Значение t-критерия Стьюдента и доверительных интервалов. Средняя ошибка аппроксимации.
презентация, добавлен 23.08.2016Решение дифференциального уравнения методом Эйлера-Коши. Интерполяционный многочлен Лагранжа. Метод наименьших квадратов. График решения дифференциального уравнения. Расчет погрешности аппроксимации. Множество решений дифференциального уравнения.
курсовая работа, добавлен 08.06.2013Сущность и типы уравнения регрессии как формулы статистической связи между переменными. Теоретическая и прямая линии регрессии, проверка адекватности уравнения регрессии. Оценка значимости парного коэффициента корреляции и коэффициент детерминации.
контрольная работа, добавлен 26.06.2014Проведение анализа регрессии и построение линии регрессии (линию прогноза). Вычисление параметров регрессии "вручную", т.е., не используя "Пакет анализа". Построение точечной диаграммы и линии регрессии. Проверка зависимости ошибок друг от друга.
лабораторная работа, добавлен 01.11.2023Характеристика понятия парной регрессии. Неправильный выбор математической функции и недоучет в уравнении регрессии существенного фактора как ошибки спецификации. Использование временной информации и графический метод подбора вида уравнения регрессии.
лекция, добавлен 25.04.2015Понятие математической модели, ее свойства и классификация. Обзор систем и основные принципы компьютерного моделирования. Расчет значений функций токов в указанной схеме с использованием системы MathCAD и построение их сводного графика на одном поле.
курсовая работа, добавлен 23.05.2013Последовательность основополагающих стадий построения математической модели по заданному вектору. Методы приближенного описания объекта моделирования, выраженного с помощью математической символики по назначению. Применение уравнений "входа-выхода".
презентация, добавлен 09.12.2014Тестирование гипотез о дисперсии ошибок с помощью статистики Пирсона. Распределение оценок коэффициентов в асимптотике. Проверка значимости коэффициентов множественной регрессии по критерию Стьюдента. Предсказание среднего значения зависимой переменной.
лекция, добавлен 15.06.2014Сущность и характерные особенности функции нескольких переменных, порядок расчета и анализа ее дифференциала. Определение частных производных. Применение дифференциала к приближенным вычислениям. Метод множителей Лагранжа и наименьших квадратов.
методичка, добавлен 19.09.2017