Математик И.Г. Петровский (1901-1973)
Биографический очерк о жизни, научной, педагогической и общественной деятельности российского математика И.Г. Петровского, автора современной теории дифференциальных уравнений. Анализ основных направлений его исследований в области математики и механики.
Подобные документы
Анализ методов демонстрации студентам важности математики в современной науке и практической деятельности. Анализ проектного метода, изучение применения элементов метода проектов при изучении дисциплины "Математика и математические методы в биологии".
статья, добавлен 05.07.2021Николай Лобачевский, один из гениальных математиков, краткая биография ученого. Области применения геометрии Лобачевского в науке. Лобачевский - автор фундаментальных работ в области алгебры, теории бесконечных рядов и приближенного решения уравнений.
реферат, добавлен 07.06.2021Изучение особенностей биографии древнегреческого математика и автора первых теоретических трактатов Эвклида. Исследование его главных трудов. Рассмотрение основных заслуг Эвклида в математике. Характеристика исторического значение труда "Начала".
реферат, добавлен 02.04.2014Решение краевых задач уравнений математической физики и задачи о разыскивании собственных значений и собственных функций для обыкновенных дифференциальных уравнений. Задача Штурма-Лиувилля о нахождении отличных от нуля решений дифференциальных уравнений.
курсовая работа, добавлен 26.02.2020Греки классического периода - родоначальники математики. Особенности греческой системы исчисления. Величайшие древнегреческие математики. Развитие математики в эпоху Средневековья и Возрождения. История становления современной математической науки.
реферат, добавлен 15.10.2011Изучение квантильных дифференциальных уравнений Пфаффа, которые строятся на основе двухмерных условных квантилей многомерных вероятностных распределений. Исследование основных вероятностных свойств интегральных многообразий максимальной размерности.
статья, добавлен 31.05.2013Назначение, области применения, достоинства и недостатки компьютерной системы для персонального компьютера Mathematica. Введение данных и решение дифференциальных уравнений Абеля и Дарбу математически, в аналитической форме, в системе Mathematica.
курсовая работа, добавлен 04.08.2012Понятие степенного ряда и области его сходимости. Введение функций С(x) и S(x), формулы их сложения и вывод основных свойств. Тригонометрические функции как решения системы двух дифференциальных уравнений первого порядка. Применение рекуррентных формул.
курсовая работа, добавлен 09.03.2012Характеристика и обоснование преимуществ метода численного интегрирования обыкновенных дифференциальных уравнений, разработанного Эверхартом. Исследование алгоритма и основной идеи построения метода Эверхарта на примере решения уравнений разных видов.
статья, добавлен 03.03.2018Жизнь и научные труды Пифагора, школа пифагорейцев, наследовавших учение философа. Физическое применение и подтверждение пифагорейцами теоретических выкладок ученого, позволивших получить необходимые в современной жизни знания в области математики.
контрольная работа, добавлен 18.12.2009Понятие и сущность текстовой задачи. Вспомогательные модели, используемые в начальном обучении математики. Решение системы уравнений алгебраическим способом. Использование методов текстовых арифметических задач на уроках математики в начальных классах.
методичка, добавлен 28.03.2017Анализ приемов нахождения решений дифференциальных уравнений через элементарные или специальные функции. Принцип сжатых отображений. Понятие метрического пространства. Решение задач методами последовательных приближений Пикара, Эйлера, Рунге-Кутта.
дипломная работа, добавлен 21.09.2016Характеристика полиномиальной асимптотики решений. Анализ нормальной системы обыкновенных дифференциальных уравнений. Проверка абсолютной сходимости интеграла с помощью функций пространства. Особенность стремления аргумента бесконечности к полиному.
статья, добавлен 03.11.2015История рождения теории отношения и геометрической математики. Появление аксиомы Архимеда в древней Греции, задач на пропорции, линейные и квадратные уравнения, дроби. Развитие математики в Древнем Востоке, Китае и Индии. Создание системы счисления.
контрольная работа, добавлен 16.02.2022- 90. Исследование решений операторно-дифференциальных уравнений в частных производных высшего порядка
Рассмотрение общей схемы исследования нелинейных дифференциальных и интегро–дифференциальных уравнений в частных производных высокого порядка. Характеристика основ применяемого метода дополнительного аргумента. Сведение к решению интегрального уравнения.
реферат, добавлен 18.05.2016 Применение математических методов в деятельности среднего медицинского персонала. Линейность или нелинейность дифференциальных уравнений. Дифференциальные уравнения с разделяющимися переменными. Моделирование с применением дифференциальных уравнений.
реферат, добавлен 19.01.2015Основные направления развития математики в XX веке: топология, риманова геометрия, теория вероятности. Новые области применения математики в связи с развитием компьютерных технологий. Использование сведений о развитии математики в начальной школе.
курсовая работа, добавлен 20.09.2018Современное обозначение непрерывных дробей. Работы Эйлера по теории цепных дробей. Метод нахождения наибольшего общего делителя. Корень квадратного уравнения с целочисленными коэффициентами. Метод приближенного решения дифференциальных уравнений.
статья, добавлен 12.03.2012Использование матричных уравнений в теории устойчивости движения, при решении дифференциальных уравнений Риккати и матриц Сильвестра. Формула неоднородного уравнения. Существенное отличие частного решения от конструкции в виде псевдообратного оператора.
статья, добавлен 30.10.2016К.Ф. Гаусс как великий математик всех времен, оценка его вклада в развитие данной науки, краткий очерк жизни и личностного становления. Золотая теорема. Открытия Гаусса в других областях науки: электродинамика и земной магнетизм, геодезия, астрономия.
реферат, добавлен 01.04.2012Прикладная математика как объединение всех математических методов и дисциплин, находящих практическое применение за пределами чистой математики. Применение математики в других областях науки и техники (в физике, химии, астрономии, экономике, инженерии).
статья, добавлен 30.03.2019Краткие биографические данные о жизни Фридриха Гаусса. История составления таблицы обратных величин. Первый успех математика, построение правильного 17-угольника циркулем и линейкой. Развитие высшей алгебры, теории чисел, дифференциальной геометрии.
реферат, добавлен 17.12.2013Греческая система счисления (аттическая): использование букв алфавита. Дедуктивный характер греческой математики, изобретенный Фалесом. Решение технических задач с помощью математики александрийского периода. Современные достижения в области математики.
реферат, добавлен 06.07.2009Рассмотрение биографии великих ученых и их основных заслуг в области математики. Характеристика достижений и научных открытий Евклида, Пифагора, И. Ньютона, Б. Паскаля, Г. Лейбница, Р. Декарда, Л. Эйлера, Б. Римана, К. Гаусса, А. Тьюринга и Э. Уайлса.
презентация, добавлен 04.05.2017Характеристика основных высказываний известных людей о науке, которая изучает величины. Главная особенность применения математики в медицине, пекарне, торговле, строительстве и в быту. Использование чисел в пословицах, поговорках и сочинениях учащихся.
презентация, добавлен 07.12.2014