Курс высшей математики

Аналитическая геометрия и линейная алгебра. Декартова прямоугольная и полярная системы координат на плоскости. Математический анализ, дифференциальное исчисление функций одной переменной. Дифференциальные уравнения с частными производными второго порядка.

Подобные документы

  • Задачи вычисления неопределенного и определенного интегралов от функций одной переменной. Дифференциальные уравнения первого и высших порядков. Формирование умения использовать методы математики для решения профессиональных задач. Примеры решения задач.

    учебное пособие, добавлен 19.11.2015

  • Определение понятия поверхностей второго порядка в геометрии. Сущность и построение эллипсоида (сферы), гиперболоиды, конуса, параболоиды, цилиндра, плоскости. Классификация поверхностей и отражение поверхности второго порядка в сферических координатах.

    презентация, добавлен 02.02.2019

  • Понятие дифференциального уравнения. Определение функций производного порядка. Линейные дифференциальные уравнения с постоянными коэффициентами. Решение системы по методу Эйлера. Геометрическая интерпретация комплексных чисел и условия Коши-Римана.

    лекция, добавлен 22.07.2015

  • Дифференциальные уравнения второго порядка с постоянными коэффициентами. Вычисление значения неопределенных коэффициентов. Решение системы из трех уравнений. Три случая решения характеристического уравнения и общее решение однородного уравнения.

    учебное пособие, добавлен 05.05.2015

  • Определение и экономический смысл производной. Построение касательной к графику функции. Сущность дифференцируемости и эластичности функции. Правила Лопиталя. Приближенные вычисления производной сложной и обратной функций. Таблица значений производных.

    реферат, добавлен 17.01.2011

  • Описание связи между неизвестной функцией и ее производными дифференциальным уравнением. Решение уравнения Клеро в параметрическом виде. Определение огибающей семейства прямых. Общее решение уравнения Лагранжа. Дифференцирование равенства по переменной x.

    реферат, добавлен 21.05.2021

  • Изучение методов решения систем линейных и нелинейных уравнений. Постановка краевых задач. Приближенное вычисление обыкновенных дифференциальных уравнений и уравнений c частными производными. Классификация дифференциальных уравнений второго порядка.

    учебное пособие, добавлен 16.05.2010

  • Методика вычисления координат на линии и в плоскости. Основные принципы расчета площади геометрических фигур. Ознакомление с уравнениями прямой линии. Способы построения точек для эллипса, гиперболы и параболы. Математические действия над векторами.

    курс лекций, добавлен 22.11.2015

  • Решение систем линейных уравнений методом Крамера. Матрицы и операции над векторами. Плоскости и прямая в пространстве. Введение в математический анализ. Дифференциальное исчисление функции. Методы вычисления неопределенного и определенного интеграла.

    учебное пособие, добавлен 13.01.2014

  • Интегральное и дифференциальное исчисления функций одной переменной. Числовые множества. Предел и непрерывность функций. Производная и дифференциал. Кривизна и кручение кривой. Интегрирование рациональных дробей. Критерий Коши собственного интеграла.

    учебное пособие, добавлен 31.03.2016

  • Общие понятия, определения и примеры дифференциальных уравнений. Дифференциальные уравнения I порядка, задача Коши. Уравнения с разделяющимися переменными, линейные уравнения. Теорема существования и единственности решения дифференциального уравнения.

    курсовая работа, добавлен 16.04.2015

  • Решение системы линейных уравнений с двумя неизвестными методом Крамера. Элементы аналитической геометрии. Пределы функции в точке и на бесконечности. Общая схема исследования функций и построения графиков. Дифференциальные уравнения первого порядка.

    курс лекций, добавлен 30.04.2012

  • Операции над множествами. Свойства функции одной переменной. Теоремы о пределах. Производная функции. Уравнение касательной. Дифференциал функции; правило Лопиталя; комплексные числа; ряды. Интегрирование; дифференциальные уравнения; двойной интеграл.

    курс лекций, добавлен 07.03.2015

  • Понятие множества, операции над ними. Основные элементарные функции, их графики. Односторонние пределы функции одной переменной. Бесконечно малые функции, их классификация. Непрерывность и дифференцируемость. Линии уровня и градиент функции переменных.

    учебное пособие, добавлен 10.12.2012

  • Основные понятия об обыкновенных дифференциальных уравнениях. Обзор разновидностей дифференциальных уравнений 1-го порядка. Обобщенное однородное уравнение. Уравнение Бернулли. Дифференциальные уравнения в полных дифференциалах. Интегрирующий множитель.

    лекция, добавлен 18.12.2011

  • Понятие производной, её геометрический смысл. Правила дифференцирования, производная сложной функции. Дифференциал функции, логарифмическое дифференцирование, правило Лопиталя. Производные высших порядков и их применение для исследования свойств функций.

    методичка, добавлен 27.09.2012

  • Рассмотрение возрастающих и убывающих функций, особенностей поведения функций в точке. Определение функции, непрерывной в каждой точке. Применение понятия предела функции в экономических расчетах. Свойства производной, производные высших порядков.

    реферат, добавлен 13.06.2015

  • Особенности построения интегральной кривой дифференциального уравнения первого порядка методом изоклин. Методы решения физической задачи с его помощью. Нахождение закона движения материальной точки с помощью дифференциального уравнения второго порядка.

    курсовая работа, добавлен 10.01.2012

  • Элементы линейной алгебры и аналитической геометрии. Дифференциальное исчисление функции одной и нескольких переменных. Комплексные числа, уравнения математической физики. Элементы теории вероятностей и математической статистики, дискретная математика.

    учебное пособие, добавлен 02.12.2014

  • Дифференциальные уравнения I порядка. Уравнения с разделяющимися переменными. Однородные и линейные уравнения. Теорема существования и единственности решения дифференциального уравнения. Линейное однородное уравнение с постоянными коэффициентами.

    курсовая работа, добавлен 04.03.2017

  • Уравнение высоты треугольника, тангенс угла между диагоналями параллелограмма. Уравнение плоскости, проходящей через заданную точку параллельно плоскости. Канонические уравнения прямой. Координаты точки пересечения прямой. Геометрическое место точек.

    контрольная работа, добавлен 14.03.2016

  • Понятие определителей, действия над матрицами. Система линейных алгебраических уравнений. Векторы и нелинейные операции. Аналитическая геометрия: простейшие задачи на плоскости. Приложения производной: правило Лопиталя, монотонность функции, экстремумы.

    методичка, добавлен 15.11.2014

  • Исследование для параболического уравнения второго порядка (специального вида) краевой задачи, когда каждое равенство граничного условия однородно относительно параметра при замене производных. Последовательность решения некорректных краевых задач.

    статья, добавлен 02.02.2019

  • Понятие дифференциальных уравнений первого порядка. Частный интеграл как общее и частное решение уравнения, записанное в неявной форме; задача Коши. Уравнение показательного роста. Дифференциальное уравнение закона радиоактивного распада Резерфорда.

    реферат, добавлен 22.11.2013

  • Поняття векторів, їх види, лінійна залежність, коллінеарність і компланарність, визначення координат. Обчислення скалярних добутків. Приклади застосування векторів до задач мікроекономіки. Прямокутна декартова система координат на площині та у просторі.

    реферат, добавлен 19.11.2009

Работы в архивах красиво оформлены согласно требованиям ВУЗов и содержат рисунки, диаграммы, формулы и т.д.
PPT, PPTX и PDF-файлы представлены только в архивах.
Рекомендуем скачать работу и оценить ее, кликнув по соответствующей звездочке.