Применение нейронных сетей в подсистеме распознавания эмоций для проекта "Сурдотелефон"
Особенности применения нейронной сети с использованием библиотеки OpenCV для распознавания эмоций. Обучение нейронной сети, распознавание лиц из базы данных Yale Facesс помощью обучающего набора данных в рамках авторского проекта "Сурдотелефон".
Подобные документы
Решение задачи обучения нейронной сети с помощью алгоритма обратного распространения на основе объема страховых сборов на данный отчетный период. Расчет количества нейронов в скрытом слое и количества скрытых слоев. Исследование структуры нейронной сети.
статья, добавлен 29.09.2012Архитектура искусственных нейронных сетей, особенности их обучения с учителем и без него. Правило коррекции по ошибке. Обучение методом соревнования. Основные принципы генетического алгоритма. Анализ применения нейронных сетей для синтеза регуляторов.
дипломная работа, добавлен 23.02.2015Предложен формальный алгоритм построения полносвязной части нейросетевого классификатора. Описаны подходы к подбору гиперпараметров. При использовании данного алгоритма удалось снизить общее количество настраиваемых параметров полносвязной нейронной сети.
статья, добавлен 02.04.2019Исследование и анализ результатов сравнения нейронной сети на основе формальных понятий с другими методами классификации данных. Ознакомление с методами классификации данных на реальных датасетах. Характеристика антимононотонности соответствия Галуа.
дипломная работа, добавлен 01.09.2017Изучены вопросы формирования массива данных для построения искусственной нейронной сети, предназначенной для поиска взаимосвязей между социальными и экономическими параметрами развития регионов России. Исследования в области региональной компаративистики.
статья, добавлен 01.09.2021Применение нечеткой нейронной сети на основе алгоритма Сугено путем аппроксимации управляющего напряжения, как функции координат системы, для реализации терминального управления. Описание базы правил и функции принадлежности, результаты применения сети.
статья, добавлен 21.02.2013Исследование применения классификации и анализа объектов на основе нейронных сетей в задачах распознавания объектов в видеопотоке. Разработка и реализация алгоритма обучения нейронных сетей для реализации механизмов классификации объектов в видеопотоке.
дипломная работа, добавлен 10.12.2019Биологический прототип и искусственный нейрон. Распознавание цифр с помощью сетей Хопфилда. Алгоритм функционирования сети. Классификация входного образа. Развитие искусственных нейронных сетей. Исследование возможностей нейронных сетей и их развития.
курсовая работа, добавлен 25.01.2014Погружение структурной модели в пространство рецепторных и аксоновых полей - процесс, порождающий топологическую модель нейронной сети, по которой можно реализовать адаптивный алгоритм обработки данных. Сущность регуляризации параметров алгоритма.
статья, добавлен 10.05.2022Разработка Розенблаттом математической и компьютерной модели восприятия информации мозгом на основе двухслойной обучающейся нейронной сети. Алгоритм параллельной распределённой обработки данных в середине 1980 годов. Основы нейросетевых технологий.
дипломная работа, добавлен 07.08.2018Анализ классической схемы математического моделирования. Методы распознавания объектов, сигналов, ситуаций, явлений и процессов. Характеристика задач распознавания образов и их типы. Использование искусственных нейронных сетей для распознавания образов.
реферат, добавлен 03.11.2016Понимание изображения документа, порядок анализа проекционных профилей и преобразование Хафа. Процесс оптического распознавания символов и применение нейронных сетей. Классификация перцептронов, обучение и ограничение. Процесс работы сети Хопфилда.
дипломная работа, добавлен 14.05.2013Нейросетевые технологии, история возникновения нейронных сетей. Основные виды и применение искусственных нейронных сетей. Самоорганизующаяся карта Кохонена, задачи, решаемые с ее помощью. Создание компьютерной имитационной модели нейронной сети Кохонена.
дипломная работа, добавлен 12.01.2012MATLAB как пакет прикладных программ для решения задач технических вычислений и одноимённый язык программирования, используемый в этом пакете. Создание нейронной сети в графическом интерфейсе. Экспортирование созданной нейронной сети в рабочую область.
контрольная работа, добавлен 30.05.2016Разработка программы распознавания действий человека. Работа с видеопотоком и классификатором. Выделение особенностей и структуры сверточной нейронной сети. Функции активации искусственного нейрона. Выделение контура из изображения и определение движения.
дипломная работа, добавлен 05.11.2015Описание разработанной методики синтеза импульсных рекуррентных нейронных сетей в составе машины неустойчивых состояний для решения задачи распознавания динамических образов в рамках парадигмы резервуарных вычислений. Входные данные и их предобработка.
статья, добавлен 15.01.2019- 67. Нейронные сети
Свойства нейронных сетей, области их применения и классификация. Структура и принципы работы нейронной сети и особенности ее обучения. Нейросетевые системы управления. Разработка нейросевого регулятора с наблюдающим устройством, управление объектом.
реферат, добавлен 08.10.2011 Способность принимать решения, выявляя скрытые закономерности при обработке, учёте многочисленных данных – основное преимущество нейронных сетей в медицине. Ответ на терапию, период болезни - ключевые критерии классификации бронхиальной астмы у детей.
статья, добавлен 31.08.2020Методика выбора нейронной сети для решения задач регрессионного анализа многомерных данных. Оценка эффективности выбранной нейросети при решении задачи аппроксимации зашумленных данных. Результаты моделирования прочностных характеристик металла шва.
статья, добавлен 27.05.2018Определение алгоритмов (оптимизационных методов) обучения искусственных нейронных сетей. Характеристика их видов: метод случайного поиска и стохастического градиентного спуска. Оценка программной реализации адаптивного метода обучения нейронной сети.
статья, добавлен 29.05.2017Задачи идентификации неоднородностей на цифровых изображениях. Предварительная обработка снимков с использованием полосовых частотных фильтров. Преобразование изображений в псевдоцвета. Принципы нейросетевой технологии для распознавания текстуры снимков.
статья, добавлен 02.03.2018Совершенствование технологий распознавания объектов природного происхождения с большой визуальной вариабельностью в промышленных системах технического зрения. Отбор информативных признаков, участвующих в классификации. Выбор топологии нейронной сети.
автореферат, добавлен 02.05.2018Устройство и компоненты системы машинного (компьютерного) зрения. Изучение основных возможностей библиотеки OpenCV в задачах распознавания образов. Описание алгоритмов поиска, обработки и анализа изображений объектов методом сравнения их контуров.
дипломная работа, добавлен 07.08.2018Понятие распознавания: история развития, классификация основных методов распознавания образов (РО). Общая характеристика задач РО и их основные типы. Главные проблемы и перспективы развития распознавания образов: особенности применения РО на практике.
реферат, добавлен 26.04.2016Форма представления выходной информации. Рассмотрение способов её контроля. Обучение искусственных нейронных сетей. Исследование их преимуществ и недостатков. Источники и способы получения данных. Изучение особенностей применения нейронных сетей.
курсовая работа, добавлен 16.05.2016