Распознавание образов с помощью нейронных сетей в среде MatlabR2009b
Создание шаблона, который позволит студенту приобрести необходимые знания для создания, обучения и стимуляции нейронной сети. Проектирование приложения по визуализации образов букв русского алфавита. Шаблоны букв, созданные в графическом редакторе.
Подобные документы
Составление базы данных почасового электропотребления. Адаптация входных данных для обучения искусственной нейронной сети. Выбор алгоритма обучения нейронной сети. Выбор архитектуры нейронной сети. Трудности для прогнозирования электропотребления.
статья, добавлен 27.07.2017- 102. Нейронные сети
Нейронные сети - одно из приоритетных направлений исследований в области искусственного интеллекта. Модель нейрона и его элементы. Классификация и свойства нейронных сетей, концептуальные подходы к их обучению. Представление знаний в нейронной сети.
реферат, добавлен 29.12.2011 Определение общего количества собственных векторов, используемых при распознавании образов. Необходимость обучения системы сформировать порог идентификации. Возможности по настройке системы для обеспечения необходимого качества распознавания образов.
статья, добавлен 19.06.2018Понятия, определения и проблемы, связанные с системами распознавания образов. Классификация методов, их применение для идентификации и прогнозирования. Роль и место распознавания образов в автоматизации управления сложными системами, кластерный анализ.
курсовая работа, добавлен 26.08.2010Создание графического представления проекта пользователем с помощью визуализации. Разработка программы правления в среде CoDeSys на языке LD. Формирование окна конфигурирования элемента. Анализ панелей управления с рисованием в воображении картинок.
контрольная работа, добавлен 06.10.2017Моделирование и анализ бизнес-процесса локализации неисправности. Анализ способов представления инженерных сетей. Моделирование инженерной сети и помещения. Архитектура приложения, описание используемых технологий. Модуль визуализации, WebGL, Three.
дипломная работа, добавлен 30.07.2016Нейронные сети и вычислительные системы на их основе. Алгоритмы генетического поиска для построения топологии и обучения нейронных сетей. Линейные преобразования векторов. Биологический нейрон и его строение. Признаковое и конфигурационное пространство.
курс лекций, добавлен 17.01.2011История возникновения, виды, свойства и обучение искусственных нейронных сетей. Технология самообучения и задачи, решаемые при помощи нейронной сети Кохонена. Ограничения, накладываемые на компьютерную имитационную модель, ее схемы в среде MatLab.
дипломная работа, добавлен 12.01.2012Понятие машинного зрения и распознавания образов, существующие разработки в области распознавания жестов глухонемых, основные требования и ограничения. Методы и этапы распознавания образов применительно к задаче распознавания языка жестов.
дипломная работа, добавлен 21.09.2018Структурные алгоритмы построения статических и динамических нейронных сетей. Многослойный персептрон с временными задержками и связанные с ним нейросетевые архитектуры. Динамическая кластеризация и сети Кохонена. Обзор итерационных методов обучения сетей.
книга, добавлен 07.03.2014Использование искусственных нейронных сетей, их способность к процессу настройки архитектуры сети и весов синаптических связей для эффективного решения поставленной задачи. Применение нейронных сетей в области телекоммуникаций, экономики и финансов.
статья, добавлен 26.04.2017Построение и обучение нейронных сетей, которые смогут обучиться для успешного прохождения компьютерных игр. Эволюционный и генетический алгоритмы обучения нейронной сети. Сравнительный анализ самообучающихся алгоритмов на основе платформы OpenAI.
дипломная работа, добавлен 01.09.2017Изучение нейросетевых технологий с помощью симулятора нейронных сетей. Обзор существующих симуляторов нейронных сетей и оценка пригодности их использования в учебном процессе. Авторская разработка учебного нейросимулятора для использования его в ВУЗе.
статья, добавлен 26.04.2019Значение компьютерной визуализации в приборостроении. Использование различных визуальных образов, методов их создания и программных продуктов для визуализации. Программное обеспечение визуализации. Рассмотрение примеров визуального представления данных.
контрольная работа, добавлен 02.07.2016Основные инструменты программы Paint. Действия, которые можно выполнить с помощью меню программы. Работа с рисунком: растягивание, наклонение. Палитра в графическом редакторе Paint. Общий вид программы. Вид рисунка в крупном масштабе, с сеткой и эскизом.
курсовая работа, добавлен 13.04.2011Разработка приложения для распознавания русскоязычного рукописного текста сверточными нейронными сетями. Реализуемый алгоритм со свёрточной нейросетью обеспечит эффективное и оптимальное решение сложных задач компьютерного зрения за короткий интервал.
статья, добавлен 20.02.2025Процесс обучения нейросети-классификатора, сравнения эффективности теоретических методов оптимизации со стохастическими. Подтверждение преимуществ и потенциальных возможностей. Основные свойства задач (баз данных) и размеры нейронных сетей для них.
статья, добавлен 08.02.2013Форма представления выходной информации. Рассмотрение способов её контроля. Обучение искусственных нейронных сетей. Исследование их преимуществ и недостатков. Источники и способы получения данных. Изучение особенностей применения нейронных сетей.
курсовая работа, добавлен 16.05.2016Описание принципов работы технологии искусственных нейронных сетей. Алгоритмы построения обучения сетей, возможности снижения временных затрат, необходимых для такого обучения. Обобщенная схема нейрона. Схема разделения вектора весов по ИР-элементам.
статья, добавлен 12.07.2021Теоретические основы нейронных сетей: применение, топология, обучения. Полезные свойства систем содержащих нейронные сети. Содержательная сущность поддержки принятия решений. Оценка возможностей нейронных сетей в системе поддержки принятия решений.
курсовая работа, добавлен 22.05.2018Анализ градиента для некоторых случаев нейронных сетей с вейвлет-разложением целевого вектора – нового типа нейронной сети, специализированного на распознавании речи и преобразовании сигнала, позволяющего ускорить обучение по сравнению с перцептроном.
статья, добавлен 28.05.2017Разработка программного модуля диагностики поведения роторной системы на основе нелинейных авторегрессионных моделей нейронных сетей и алгоритма обучения Левенберга-Марквардта. Применение искусственной нейронной сети в анализе динамических процессов.
статья, добавлен 01.02.2019Рассмотрение принципов работы нейронной сети. Разработка алгоритма машинного обучения. История возникновения нейронных сетей. Последовательность интеллектуальной обработки информации в интернете. Примеры применения нейросетей в различных сферах.
статья, добавлен 01.03.2019Аналитический обзор существующих нейронных сетей: логистическая (сигмоидальная) функция, гиперболический тангенс, выпрямленная линейная функция. Анализ методов обучения: обратного распространения ошибки, упругого распространения, генетический алгоритм.
дипломная работа, добавлен 14.12.2019Описание базовых задач для нейронных сетей и исторически первых методов настройки сетей для их решения: классификация (персептрон Розенблатта); ассоциативная память (сети Хопфилда); восстановление пробелов в данных; кластер-анализ (сети Кохонена).
курсовая работа, добавлен 04.04.2009