Эконометрия: регрессионный анализ
Приведение геометрической иллюстрации простой и ортогональной регрессии в пространстве переменных и наблюдений. Выведение формулы для дисперсии ошибки среднего и формулы оценки Вальда углового коэффициента регрессии. Оценка параметров систем уравнений.
Подобные документы
Уравнение парной регрессии, её параметры: коэффициенты корреляции и эластичности, их значимость и доверительный интервал, ошибка аппроксимации, коэффициент детерминации. Матрица парных коэффициентов корреляции. Анализ параметров уравнения регрессии.
контрольная работа, добавлен 07.07.2015Особенности влияния рынка на показатель эффективности ценной бумаги с помощью коэффициента эластичности, построение уравнений регрессии, решение систем методом Крамера, расчет прибыли банка, значение коэффициентов корреляции и t-критерия Стьюдента.
контрольная работа, добавлен 22.06.2014Проблема изучения взаимосвязей экономических показателей в экономическом анализе. Спецификация, смысл и оценка параметров линейной регрессии и корреляция, оценка их существенности. Интервалы прогноза по линейному уравнению регрессии. Нелинейная регрессия.
контрольная работа, добавлен 28.02.2013Изучение динамики товарооборота. Эконометрические модели товарооборота. Дисперсионный анализ для линейной регрессии. Показательный тренд. Множественный регрессионный анализ товарооборота. Построение регрессии. Коэффициенты корреляции. Мультиколлинеарность
реферат, добавлен 21.08.2008Систематизация различных разделов экономической статистики и эконометрии. Специфика экономических измерений. Методология проведения индексного анализа в непрерывном времени. Моделирование переменных линейной регрессии. Матричное дифференцирование.
учебное пособие, добавлен 17.12.2013Расчет уравнения парной линейной регрессии зависимости прибыли от производительности труда. Особенность вычисления обобщающего коэффициента эластичности. Калькуляция средней ошибки аппроксимации. Характеристика показателей корреляции и детерминации.
контрольная работа, добавлен 14.06.2015Спецификация эконометрической модели. Описание способов для определения наличия или отсутствия мультиколлинеарности. Отбор факторов, включаемых в модель множественной регрессии. Линейное уравнение множественной регрессии, сущность фиктивных переменных.
реферат, добавлен 31.03.2017Изучение причинно-следственных зависимостей переменных, представленных в форме временных рядов. Сущность методов исключения тенденции. Включение в модель регрессии фактора времени. Определение параметров стадий тренда и коэффициента их устойчивости.
реферат, добавлен 14.11.2015Параметры уравнения линейной регрессии, экономическая интерпретация коэффициента регрессии. Остаточная сумма квадратов. Проверка независимости остатков с помощью критерия Дарбина-Уотсона. Вычисление коэффициента детерминации. Построение степенной модели.
контрольная работа, добавлен 23.11.2011Расчет линейных коэффициентов парной корреляции и детерминации. Оценка статистической значимости параметров регрессии и коэффициента корреляции с уровнем значимости 0,05. Прогноз значения признака-результата при прогнозируемом значении признака-фактора.
контрольная работа, добавлен 25.03.2016Построение линейного уравнения парной регрессии. Расчет линейного коэффициента парной корреляции. Оценка статистической значимости уравнения регрессии. Расчет матрицы парных коэффициентов корреляции. Построение поля корреляции результативного признака.
контрольная работа, добавлен 01.03.2017Методика построения точечной диаграммы и линии регрессии в программном приложении Microsoft Excel. Определение стандартного отклонения выборки и коэффициента корреляции. Порядок выполнения проверки соответствия остатков нормальному распределению.
лабораторная работа, добавлен 02.01.2022Расчет и сущность параметров уравнений линейной и нелинейной парной регрессии. Связь доходов от международных перевозок и длины дороги с помощью показателей корреляции и детерминации. Оценка аппроксимации качества уравнения регрессии доходов от перевозок.
курсовая работа, добавлен 09.06.2015Построение доверительных интервалов для коэффициентов линейной регрессии и дисперсии ошибок. Проведение процедуры пошагового отбора переменных. Проверка обратного движения на мультиколлинеарность при помощи VIF. Расчет параметров автокорреляции.
курсовая работа, добавлен 01.10.2017Корреляционная зависимость - статистическая взаимосвязь ряда случайных величин. Регрессионный анализ — метод моделирования данных и оценки их свойств. Расчет среднего квадратичного отклонения для проверки коэффициента корреляции на достоверность.
курсовая работа, добавлен 10.11.2014Особенности применения метода наименьших квадратов для минимизации ошибки как одного из методов регрессионного анализа для оценки неизвестных величин по результатам измерений, содержащим случайные ошибки. Основные виды уравнений множественной регрессии.
реферат, добавлен 24.09.2015Основные положения регрессионного анализа. Классическая нормальная линейная модель множественной регрессии. Сущность метода наименьших квадратов. Теорема Гаусса-Маркова. Коэффициенты детерминации. Понятия мультиколлинеарности и частной корреляции.
курсовая работа, добавлен 29.04.2014Модель парной линейной регрессии. Оценивание параметров функции парной линейной регрессии. Связь оценок параметров функции парной линейной регрессии с выборочными числовыми характеристиками. Коэффициент детерминации и корреляции. Корреляционное поле.
курсовая работа, добавлен 21.08.2008Исследование взаимосвязи энерговооруженности и выпуска готовой продукции. Построение графиков практической и теоретической линии регрессии. Измерение тесноты связи. Проверка информации на нормальность распределения. Определение коэффициента корреляции.
контрольная работа, добавлен 30.06.2014Построение однофакторного уравнения линейной регрессии зависимости производительности труда рабочего (y) от стажа работы x. Определение коэффициента эластичности. Экономическая интерпретация коэффициента регрессии и коэффициента эластичности труда.
контрольная работа, добавлен 21.12.2019Регрессионная модель как функция, описывающая зависимость между количественными характеристиками сложных систем. Гетероскедастичность — понятие прикладной статистики, означающее неоднородность наблюдений. Гомогенность дисперсии случайной ошибки.
статья, добавлен 23.03.2014Оценка статистической значимости уравнения регрессии и ее параметров, с помощью критериев Фишера и Стьюдента. Построение матрицы парных коэффициентов корреляции, установление мультиколлинеарных факторов. Результаты, оформление аналитической записки.
контрольная работа, добавлен 10.03.2011Зависимость индекса человеческого развития от валового накопления и суточной калорийности питания населения. Расчет парных коэффициентов корреляции с помощью средних квадратических отклонений и показателей. Построение однофакторных уравнений регрессии.
контрольная работа, добавлен 13.01.2018Осуществление проверки значимости уравнения регрессии на основе критерия Фишера. Изучение множественного коэффициента корреляции и детерминации. Распределение регионов по уровню занятости населения. Расчет дисперсии и среднего квадратического отклонения.
задача, добавлен 27.12.2017- 100. Эконометрика
Основные этапы построения эконометрической модели. Оценка параметров линейной парной регрессии и нелинейных моделей. Отбор факторов при построении множественной регрессии. Моделирование одномерных временных рядов и прогнозирование. Модели авторегрессии.
курс лекций, добавлен 16.05.2016