Математическая логика
Аксиоматический метод в математике. Конъюнктивная и дизъюнктивная нормальные формы. Построение исчисления высказываний в виде формальной системы. Формализация математических теорий на языке первого порядка. Теорема о полноте. Алгоритмы и машина Тьюринга.
Подобные документы
Машина Тьюринга как абстрактная машина, математическая модель идеализированного вычислительного устройства. Порядок работы машины Тьюринга, часто задаваемый в виде таблицы. Вычислимые функции. Разделение процесса вычисления на простые составляющие шаги.
презентация, добавлен 17.04.2013Исчисление высказываний. Свободные и связанные переменные. Дизъюнкты и нормальные формы. Анализ примеров использования метода резолюций в логике высказываний. Непротиворечивость аксиом. Аксиоматизация логики высказываний. Применение логических связок.
учебное пособие, добавлен 12.11.2017Определение тождественно-истинного и тождественно-ложного предикатов. Основные операции логики высказываний. Построение языка логики первого порядка, значение используемых в ней символов. Аксиоматика и доказательство формул. Понятие формальной системы.
лекция, добавлен 07.08.2013Понятие элементарной суммы и произведения. Множество дизъюнктивных и конъюнктивных нормальных форм для алгебры высказываний. Тождественно-истинная и тождественно-ложная формула. Проблема разрешимости для логики высказываний. Формализация рассуждений.
презентация, добавлен 17.04.2013Определение понятия высказывания. Изучение логических операций и их таблиц истинности. Описание формул логики высказываний, а также их равносильности. Анализ заколов логики высказываний. Описание аксиоматического метода. Примеры решения логических задач.
реферат, добавлен 28.11.2016Рассмотрение основных свойств функций алгебры логики. Базис и основные законы булевых функций. Реализация сочетательного закона при использовании логической функции И для трех переменных. Конъюнктивная и дизъюнктивная формы закона поглощения переменных.
лекция, добавлен 15.11.2017Система мышления, создающая взаимосвязи между заданными условиями и позволяющая делать умозаключения, основываясь на предпосылках и предположениях. Принципы построения математических теорий. Использование алгебры высказываний в современной информатике.
реферат, добавлен 12.04.2015Правила аксиоматического построения математических теорий. Аксиоматическое построение системы натуральных чисел. Аксиомы Пеано, метод математической индукции. Умножение целых неотрицательных чисел в количественной теории, таблица и законы умножения.
реферат, добавлен 10.01.2017Содержание аксиоматического метода построения научной теории: выделение основных понятий, формулировка аксиомы, вывод логическим путём теоремы и других определений. Разрыв между геометрией и арифметикой Евклида. Аксиома параллельности Лобачевского.
реферат, добавлен 30.10.2010Предмет математической логики. Недостатки формальной логики. Сущность понятия "высказывание". Сущность отрицания, конъюнкции. Алгебра логических значений. Главные особенности импликации. Эквивалентность как вид выражения операции. Блок управления памятью.
реферат, добавлен 21.10.2012Машина Тьюринга — абстрактный исполнитель, предназначенный для формализации понятия алгоритма. Описание и устройство машины: основные свойства, продуктивность; тезис Черча. Машина Тьюринга и алгоритмически неразрешимые функции. Проблема остановки машины.
курсовая работа, добавлен 18.02.2014Определение математических понятий: множество, история теории множеств, их сравнение и операции над ними; функция и способы ее задания, группа как непустое множество, конъюнктивная нормальная форма, формальная логика и нормальный алгоритм Маркова.
контрольная работа, добавлен 19.06.2011Разработка метода вычислений для параллельного логического вывода на знаниях, представленных формулами исчисления предикатов первого порядка. Модификация формальной системы. Методы вычислений на подстановках с учетом параллельности логического вывода.
статья, добавлен 18.01.2018Аксиоматический метод построения научной теории. Выделение понятий, формулирование аксиомы. Выведение теоремы и других понятий логическим путём. Пять "общих понятий" Евклида, причины его критики. Модель планиметрии Лобачевского на евклидовой плоскости.
реферат, добавлен 08.10.2011Основные свойства машины Тьюринга, отличающие ее от исполнителя – человека. Понятие конфигураций машины Тьюринга. Основные свойства операции композиции. Примеры вычислимых функций по Тьюрингу. Операция ветвления и зацикливания, их ключевые особенности.
презентация, добавлен 21.10.2019Сущность аксиомы как положения, принимаемого без логического доказательства в силу непосредственной убедительности. Аксиомы геометрии: история и ученые-разработчики. Общепринятый аксиоматический метод в математике и его понятие за пределами математики.
доклад, добавлен 04.12.2008Теорема существования и единственности решения. Принципы графического представления задачи Коши в математике. Характеристики частного решения дифференциального уравнения. Особые точки и способы их использования дифференциальных уравнений первого порядка.
контрольная работа, добавлен 04.12.2014Метод Рунге-Кутта четвертого порядка для решения уравнения первого порядка. Метод Булирша-Штера с использованием рациональной экстраполяции для системы уравнений. Описание алгоритма главной программы, блок-схема. Подбор программного обеспечения.
контрольная работа, добавлен 19.02.2014Принципы построения формальных теорий. Проблемы, связанные с системой аксиом. Доказательство независимости системы аксиом. Исчисление высказываний, символы и формулы. Теорема дедукции и правило силлогизма (транзитивный вывод). Примеры решения задач.
презентация, добавлен 17.04.2013- 20. Булева алгебра
Математическая логика как современная форма формальной логики, применяющей математические методы для исследования своего предмета. Теоретические аспекты понятия "вывод". Калькуляция высказываний и алгебра логических значений, импликация и эквивалентность.
реферат, добавлен 30.10.2010 Аксиоматический метод построения научной теории. Основные понятия. "Начала" Евклида. Модель планиметрии Лобачевского на евклидовой плоскости. Геометрия Лобачевского. Исторические сведения о развитии тригонометрии. Тригонометрические соотношения.
реферат, добавлен 14.07.2008Способ обоснования существования актуальных бесконечно малых чисел, основанный на понятии двузначной меры. Аксиоматический подход к понятию расширенной числовой прямой. Арифметика бесконечно малых чисел. Основные теоремы дифференциального исчисления.
монография, добавлен 03.07.2014Принципы построения пропозициональной логики. Способы исчисления высказываний с помощью алгебры. Субъектно-предикатная структура утверждений. Методы резолюции в логике предикатов. Функционирование теории множеств в системе аксиом. Виды алгоритмов.
учебное пособие, добавлен 15.01.2016Исторические вехи становления аксиоматического метода и его роль в развитии математического образования. Интерес к методам научного познания, к природе математических понятий и аксиом и логике доказательства. Дискуссии о дискурсивном и интуитивном знании.
статья, добавлен 16.03.2019Математическая логика как раздел математики, посвящённый изучению способов доказательств, утверждений, вопросов оснований математики. Умозаключение и его способы получения нового знания на основе некоторого имеющегося. Формальные аксиоматические методы.
курсовая работа, добавлен 21.04.2015