Применение искусственных нейронных сетей для прогнозирования
Рассмотрение методов прогнозирования нейронных сетей. Решение задачи обзора методов оконного прогнозирования на объеме страховых взносов. Изучение методов одношагового, многошагового прогнозирования. Применение метода окон для генерации обучающей выборки.
Подобные документы
Важность применения моделей, основанных на применении нейросетевых технологий как инструмента прогнозирования курсовой стоимости ценных бумаг. Потенциальные области применения искусственных нейронных сетей. Некоторые типовые задачи, решаемые с их помощью.
статья, добавлен 01.09.2018Классификация искусственных нейронных сетей по различным признакам. Структура простейшей и гексагональной однослойной регулярной сети. Определение направлений связи между нейронами. Предобработка данных, основные технологии. Оптимизация нейронных сетей.
лекция, добавлен 26.09.2017Рассмотрение разных методов, применяемых для анализа политических процессов и прогнозирования возможных международных конфликтов. Выявление методов, комбинация которых сможет соответствовать современным требованиям к прогнозированию политических рисков.
статья, добавлен 27.01.2019Методы формирования структуры нейронных сетей и их обучения. Принципы автоматического определения способа и параметров формирования общего решения в коллективе. Использование полученных результатов для решения задач моделирования и прогнозирования.
статья, добавлен 19.01.2018Определение сущности системы поддержки принятия решений. Ознакомление с понятием "система искусственного интеллекта". Рассмотрение особенностей использования нейронных сетей в финансах и бизнесе. Анализ преимуществ прогнозирования на нейронных сетях.
курсовая работа, добавлен 17.10.2021Основные теории искусственных нейронных сетей. Место нейронных сетей в эволюции интеллектуальных систем управления. Преимущества применения нейроинформационных технологий при решении многих как нетрадиционных, так и традиционных задач управления и связи.
книга, добавлен 09.09.2012Нейросетевые технологии, история возникновения нейронных сетей. Основные виды и применение искусственных нейронных сетей. Самоорганизующаяся карта Кохонена, задачи, решаемые с ее помощью. Создание компьютерной имитационной модели нейронной сети Кохонена.
дипломная работа, добавлен 12.01.2012Понятие искусственных нейронных сетей. Модель и архитектура технического нейрона. Обучение нейронных сетей. Основные функциональные возможности программ моделирования нейронных сетей. Однослойный и многослойный персептроны. Принцип работы сети Кохонена.
дипломная работа, добавлен 19.11.2015Направления, в которых на данный момент происходит активное развитие нейронных технологий и их практическое применение. Конкретные примеры использования нейронных сетей, сложность их внедрения. Возможности и перспективы развития подобных систем.
статья, добавлен 23.12.2024Применение искусственных нейронных сетей. Выработка алгоритма синтеза контроллера, формирующего порог, который обеспечит заданные выходные реакции объекта управления (устройства), с использованием математического аппарата искусственных нейронных сетей.
статья, добавлен 02.04.2019Основные направления, в которых на данный момент происходит активное развитие нейронных технологий и их практическое применение. Конкретные примеры использования нейронных сетей. Возможности и перспективы развития подобных систем на современном этапе.
статья, добавлен 28.03.2022Основные направления, в которых на данный момент происходит активное развитие нейронных технологий и их практическое применение. Конкретные примеры использования нейронных сетей; возможности и перспективы развития подобных систем на современном этапе.
статья, добавлен 10.04.2023Анализ решения задачи дообучения классических дискретных нейронных сетей Хемминга и Хебба без потерь запомненной ранее информации. Основные процессы распознавания и классификации образов в системах, построенных на основе искусственных нейронных сетей.
статья, добавлен 01.03.2017Форма представления выходной информации. Рассмотрение способов её контроля. Обучение искусственных нейронных сетей. Исследование их преимуществ и недостатков. Источники и способы получения данных. Изучение особенностей применения нейронных сетей.
курсовая работа, добавлен 16.05.2016Анализ принципов обучения нейронных сетей, их классификация. Описание алгоритмов обучения искусственных нейронных сетей: правило Хебба и Кохонена, дельта-правило, обратного распространения ошибки, стохастические алгоритмы, машины Больцмана и Коши.
лекция, добавлен 21.09.2017Теоретические аспекты и анализ современных статистических методов прогнозирования курсов акций. Анализ методов прогнозирования курсов акций ведущих IT-компаний и сравнение точности прогнозных показателей. Практическое использование показателя Херста.
дипломная работа, добавлен 07.12.2019Характеристика многослойной структуры нейронных сетей. Алгоритм обучения однослойного перцептрона. Построение полного алгоритма нейронных сетей с помощью процедуры обратного распространения. Программирование и применение методов Randomize и Propagate.
реферат, добавлен 20.03.2009Анализ системы управления подсистемами технического обеспечения интеллектуального здания. Особенность применения нейронных сетей. Сравнение методов случайных лесов, наивного байесовского классификатора и градиентного бустинга для задач прогнозирования.
диссертация, добавлен 04.12.2019Решение научно-технической задачи развития методов, разработки методики и аппаратных средств функционального контроля микропроцессорных сверхбольших интегральных схем. Проведение радиационных испытаний с целью прогнозирования их радиационного поведения.
автореферат, добавлен 02.08.2018Обзор алгоритмов машинного обучения. Исследование функционалов ошибки и метрики. Использование градиентного бустинга при обучении нейронных сетей. Главный анализ линейной регрессии и регуляризаторов. Характеристика алгоритма адаптации градиента.
дипломная работа, добавлен 28.08.2020Знакомство со средствами, методами MATLAB. Характеристика типичной сети с прямой передачей сигнала. Моделирование нейронных сетей с помощью пакета Simulink. Применение нейронных сетей для аппроксимации функций. Работа с нейронной сетью в командном режиме.
методичка, добавлен 26.11.2015Аппаратная и программная реализация нейронных сетей. Создание улучшенного подхода валидации точности алгоритмов глубокого обучения для применения на ИИ-ускорителях. Разработка гибкого и расширяемого инструмента для инференса искусственных нейронных сетей.
дипломная работа, добавлен 28.10.2019Свойства и структура нейронных сетей, их применение в сфере компьютерных технологий. Поиск путей увеличения скорости протекания процесса обучения. Анализ зависимость ошибки обучения от сложности структуры персептрона и количества нейронов в скрытом слое.
статья, добавлен 03.02.2021Создание классификационных и описательных шкал. Сбор исходной фактографической информации и ее ввод в систему обучающей выборки. Оценка ценности признаков для прогнозирования. Выделение признаков, наиболее существенных для решения поставленной задачи.
статья, добавлен 25.04.2017Теоретические основы нейронных сетей: применение, топология, обучения. Полезные свойства систем содержащих нейронные сети. Содержательная сущность поддержки принятия решений. Оценка возможностей нейронных сетей в системе поддержки принятия решений.
курсовая работа, добавлен 22.05.2018