Плоские кривые

Понятие кривой. Вычисление кривизны плоской кривой, ее радиус, круг. Алгебраические и трансцендентные кривые. Класс алгебраической кривой: парабола, гипербола, эллипс. Кривые 3 и 4 порядка. Параметрические уравнения циссоиды и астроиды. Свойства эволюты.

Подобные документы

  • Канонические и параметрические уравнения кривых второго порядка, таких как эллипс, гипербола и парабола, их основные свойства. Приведение уравнения кривой второго порядка к каноническому виду. Уравнения кривых второго порядка в полярных координатах.

    методичка, добавлен 06.02.2013

  • Определение и способы задания плоской кривой, их классификация и разновидности: парабола, гипербола, эллипс, трансцендентные. Свойства и характеристики кривых линий: обводы и касательные, точки и кривизна. Особенности проекций и подходы к их анализу.

    реферат, добавлен 21.08.2017

  • Описание графической теории и алгоритма машинного определения кривизны плоской кривой. Дополнительный метод решения инженерных задач через графические вычисления. Определение параметров кривизны (эволюты) эллипса ввиду отсутствия его нулевых точек.

    статья, добавлен 03.12.2018

  • Кривые и поверхности 2 порядка. Понятие канонических эллипсов, гиперболы, параболы и расчет их эксцентриситета. Кривые, заданные параметрическими уравнениями. Определение полярной системы координат и положение кривых в полярной системе координат.

    методичка, добавлен 12.12.2014

  • Вид общего уравнения кривой второго порядка. Общее понятие про эллипс, его каноническое (простейшее) уравнение. Вещественная и мнимая полуось гиперболы. Каноническое уравнение параболы. Особенности решения нелинейных неравенств с двумя неизвестными.

    реферат, добавлен 20.04.2012

  • Способы получения уравнения касательной. Определение нормали и инвариантов плоской кривой. Построение соприкасающихся и спрямляющихся плоскостей. Выражение кривизны и кручения через произвольный радиус-вектор. Параметрические уравнения поверхности.

    лекция, добавлен 01.09.2017

  • Понятие и сущность кривой второго порядка, определение координат центра и радиуса окружности. Специфика и описание эллипса, построение декартовой системы координат. Характеристика канонического уравнения гиперболы и параболы, их отличительные черты.

    лекция, добавлен 09.07.2015

  • Уравнение прямой с направляющим и нормальным вектором. Кривые второго порядка, полярная система координат. Определение терминов "гипербола", "парабола" и "эллипс". Поворот и параллельный перенос системы координат. Векторная функция скалярного аргумента.

    презентация, добавлен 21.09.2017

  • Понятие плоской кривой линии, превращение эллипса в окружность при равных осях. Построение параболы и гиперболы. Образование поверхностей вращения линейчатых и нелинейчатых. Особенности поверхностей с плоскостью параллелизма и задаваемых каркасом.

    реферат, добавлен 22.05.2012

  • Уравнение кривой второго порядка. Уравнения окружности, эллипса, гиперболы и параболы как частные случаи уравнения. Уравнение окружности в полярных координатах. Каноническое уравнение эллипса. Вывод канонического уравнения гиперболы, ее эксцентриситет.

    реферат, добавлен 25.05.2018

  • Изучение постоянных действительных чисел. Общее уравнение кривой второго порядка. Выделения полного квадрата прямых линий. Гипербола и парабола как геометрические места точек плоскости. Оценка размещения декартовых координат в алгебраическом уравнении.

    лекция, добавлен 14.03.2014

  • Виды матриц и операции над ними. Системы линейных алгебраических уравнений. Линейные операции над векторами. Аналитическая геометрия, уравнения плоскости. Кривые второго порядка: эллипс гипербола, парабола. Свойства предела функции, таблица производных.

    курс лекций, добавлен 05.01.2016

  • Понятие плоской кривой, заданной уравнением третьей степени. Понятие эллиптической кривой. Модулярные формы и модулярные эллиптические кривые. Определение модулярной эллиптической кривой и гипотеза Таниямы. Вывод теоремы Ферма из гипотезы Таниямы.

    статья, добавлен 15.09.2012

  • Аналитическое и практическое построение эволюты и эвольвенты некоторых кривых. Применение эвольвенты окружности в технике для профилирования зубчатых зацеплений. Кривизна плоской кривой, вычисление кривизны. Связь эволюты и эвольвенты, их свойства.

    курсовая работа, добавлен 06.09.2010

  • Определение кривых второго порядка на плоскости как линий пересечения кругового конуса с плоскостями, не проходящими через его вершину. Характеристика эллипса с помощью декартовой системы координат. Понятие и основные свойства гиперболы и параболы.

    лекция, добавлен 25.01.2011

  • Сущность понятия и уравнение окружности в прямоугольной системе координат. Понятие и графическое изображение эллипса. Сущность и графики параболы и гиперболы. Определение и уравнение параболы. Гипербола в опыте Резерфорда при рассеивании альфа-частиц.

    реферат, добавлен 27.11.2008

  • Характеристика кривой линии как множества точек пространства, координаты которых являются функциями одной переменной. Определение длины отрезка кривой. Изучение особенностей алгебраических, трансцендентных кривых. Анализ особенностей плоских кривых линий.

    реферат, добавлен 22.12.2015

  • История изучения плоских кривых. Особенности формы кривой и способов ее образования. Классификация плоских кривых. Канонические уравнения эллипса, гиперболы и параболы, свойства кривых, изучаемые в 9–11 классах. Цели и задачи факультативных занятий.

    дипломная работа, добавлен 22.04.2011

  • Изучение уравнения прямой линии с направляющим вектором. Гипербола - множество точек плоскости, для которых модуль разности расстояний до двух фиксированных фокусов постоянный. Векторная функция скалярного аргумента. Прямая линия, кривые второго порядка.

    презентация, добавлен 29.10.2017

  • Точная формула провисающей цепочки Галилея. Разгадка секрета цепной линии: график показательной функции. Связь между кривой и формой висящей цепочки: поиск уравнения линии. Подобие цепных линий, определение коэффициента подобия в преобразовании кривой.

    реферат, добавлен 09.11.2010

  • Общие сведения о поверхностях. Математическое обоснование плоских кривых линий. Поверхности вращения линейчатые и нелинейчатые. Поверхности с плоскостью параллелизма. Пространственные кривые линии. Конструирование поверхностей различных технических форм.

    реферат, добавлен 12.03.2010

  • Состояния равновесия, расположенные на кривой второго порядка, являющейся эллипсом или гиперболой. Изоклина бесконечности или нуля системы. Определение индекса Пуанкаре. Точка возврата кривой. Мнимые и действительные корни характеристического уравнения.

    лекция, добавлен 29.07.2013

  • Исследования локальных свойств плоской кривой. Предельное положение секущей, когда две общие с кривой точки сечения, стремясь друг к другу, совпадут. Применение приема проведения касательной к кривой из точки, заданной вне кривой с помощью кривой ошибок.

    курсовая работа, добавлен 23.03.2016

  • Определение и свойства эллипса, гиперболы и параболы. Фокальные радиусы точек. Система декартовых прямоугольных координат. Уравнения директрис эллипса. Канонические уравнения эллипса, гиперболы и параболы. Определение уравнений и кривых второй степени.

    реферат, добавлен 07.01.2012

  • Плоская алгебраическая кривая и радиус-вектор прямой на некоей постоянной величине. Уравнения декартовых координат, трисекция угла с помощью конхоиды. Циклоидальные кривые, их разновидности и Архимедова спираль, однородная и нерастяжимая тяжелая нить.

    реферат, добавлен 23.02.2012

Работы в архивах красиво оформлены согласно требованиям ВУЗов и содержат рисунки, диаграммы, формулы и т.д.
PPT, PPTX и PDF-файлы представлены только в архивах.
Рекомендуем скачать работу и оценить ее, кликнув по соответствующей звездочке.