Застосування методів дискретної математики в економіці
Принципи застосування логічних функцій в рішенні економічних задач. Практичне використання методів дискретної математики, поняття теорії графів. Сутність алгоритмів: "жадібного", Дейкстри. Розв’язування задачі "комівояжера", вибір з декількох альтернатив.
Подобные документы
Розширення методів та побудова розв’язків контактних задач для пружного півпростору, просторових та плоских задач для пружних тіл, що містять порожнини, включення та розрізи, на основі теореми додавання розв’язків рівняння Лапласа та системи рівнянь Ламе.
автореферат, добавлен 10.01.2014Дослідження широких класів некоректних задач і побудова ефективних алгоритмів їх розв’язування, які гарантують досягнення оптимальної за порядком точності наближення. Розробка ефективних алгоритмів, які використовують адаптивну стратегію дискретизації.
автореферат, добавлен 13.08.2015Основний принцип комбінаторики. Задачі на класичне означення ймовірності. Приклади розв'язку задач на операції з множинами. Застосування аксіом теорії ймовірностей. Умовні ймовірності і незалежні події. Особливості застосування випробування Бернуллі.
контрольная работа, добавлен 07.12.2011Застосовування формул доповнення та числових значень тригонометричних функцій кутів до розв'язування задач. Особливості їх засвоювання учнями. Приклади усних вправ. Обчислення значень виразу без допомоги таблиць. Поняття стандартних і нестандартних задач.
конспект урока, добавлен 14.09.2018Основні типи задач на відсотки. Визначення переваг індексного методу розв'язування задач на відсотки. Аналіз зміни показника за кілька періодів. Основи розрахування індексу зростання. Обчислення вартості товару та щорічного середнього відсотку приросту.
реферат, добавлен 09.12.2016Розробка оптимальних чисельних методів наближеного розв’язування жорстко некоректних задач. Розв'язання інтегральних рівнянь Фредгольма II роду з коефіцієнтами соболєвського типу гладкості за допомогою використання комбінації тіхоновської регуляризації.
автореферат, добавлен 20.07.2015Використання ідеї трикрокових алгоритмів, побудова нового варіанту трикрокового ітераційно-різницевого методу розв’язування задач безумовної мінімізації з кубічним порядком збіжності. Ефективність і можливість застосування запропонованого алгоритму.
статья, добавлен 30.01.2017Розгляд основних прикладів застосування чисел Фібоначчі в геометрії і демонстрації використання формули Біне на факультативних та гурткових заняттях з математики. Оцінка характеристики чисел Фібоначчі та золотої пропорції як "діамантів" математики.
статья, добавлен 14.07.2016Критерiй ручностi довільної скiнченної групи над довільним полем. Розв'язання класифiкацiйних задач теорії модулярних зображень. Узагальнення задач лiнiйної алгебри та методів їх розв'язання. Нерозкладні зображення довільної в'язки напiвланцюгiв.
автореферат, добавлен 10.01.2014Розв’язування екстремальних задач на знаходження максимуму функціоналів, які залежать від внутрішніх радіусів областей відносно точок комплексної площини та задач з вільними полюсами на одиничному колі у випадку трьох областей, які не перетинаються.
автореферат, добавлен 29.08.2014Особливість способу розв’язування різницевих рівнянь, що виникають при дискретизації двовимірних крайових задач еліптичного типу. Узагальнення поняття "ітераційні процеси Якобі і Гаусса-Зейделя". Розбиття матриці для застосування комбінованого методу.
статья, добавлен 25.08.2016Роль уроків математики у розвитку логічного мислення у дітей. Методики проведення уроків алгебри та геометрії для учнів 7-9 класів, а також позакласного уроку "Геометричний з'їзд". Особливості розв’язування вправ і задач на множення і ділення дробів.
конспект урока, добавлен 21.07.2010Застосуванню тригонометрії до розв'язування задач з алгебри у старшій школі. Методичні особливості застосування тригонометрії до розв'язування. Встановлення коренів рівняння на певному відрізку. Розв'язування системи рівнянь і доведення нерівності.
статья, добавлен 05.02.2019Значення історії математики у стимулюванні пізнавальних можливостей майбутніх вчителів. Роль сучасної математичної освіти у виявленні особистісних якостей. Система історичних задач з теорії чисел. Сучасний підхід у розв’язанні старовинних задач.
статья, добавлен 10.03.2013Розробка нових математичних методів для розв’язання крайових задач теорії аналітичних функцій. Розширення класу інтегральних рівнянь типу згортки зі змінними коефіцієнтами, які ефективно розв’язуються за допомогою перетворення Фур’є у квадратурах.
автореферат, добавлен 30.10.2015Застосування формулювання властивостей перпендикулярів, похилих та проекцій для розв'язування задач. Дослідження означення прямокутного трикутника та властивостей його сторін. Розгляд теореми Піфагора. Проведення до прямої перпендикуляра і похилої.
конспект урока, добавлен 10.09.2018Дослідження застосування звичайних комплексних, дуальних і подвійних чисел, аналіз різниці між ними. Комплексне обґрунтування сутності поняття "комплексні числа". Застосування до вивчення геометричних перетворень та розв’язування геометричних задач.
курсовая работа, добавлен 19.04.2017- 43. Високопаралельні алгоритми та засоби для розв’язання задач масових арифметичних і логічних обчислень
Вивчення методів Кунга-Лейзерзона для реалізації фільтрів нерекурсивного типу і методу реалізації фільтру рекурсивного типу стосовно розробки систолічних алгоритмів розв’язання одновимірних задач цифрової фільтрації. Аналіз організації масових обчислень.
автореферат, добавлен 14.08.2015 Вдосконалення математичної моделі задачі оптимізації розміщення орієнтованих прямокутників для класу неперервно диференційованих функцій, цілі, розробка чисельних методів їх розв’язання. Розробка програмного забезпечення для розв’язання задач оптимізації.
автореферат, добавлен 28.08.2014Розглянуто особливості використання генетичного алгоритму (ГА) для розв’язання оптимізаційних задач. Наведено класифікацію оптимізаційних задач. Детально описано структурні елементи генетичного алгоритму та їх роль для розв’язання задачі комівояжера.
статья, добавлен 19.03.2024Основні поняття електронних таблиць: введення, редагування і форматування даних. Стандартні функції та побудова діаграм і графіків. Використання табличного процесора, чисельне інтегрування, формула трапецій і Сімпсона. Модифікації метода Ейлера.
курсовая работа, добавлен 15.12.2011Аналіз стану теми "відсотки" у шкільному курсі математики. Вивчення відсотків у молодших класах. Знаходження кількох відсотків від кількості. Задачі на відсотки як елементи фінансової математики. Суть складних відсотків та принципи їх використання.
дипломная работа, добавлен 27.02.2020Основні теоретичні відомості: походження поняття похідної; зростання та спадання функції; найбільше та найменше значення функції; означення дотичної. Правила диференціювання; застосування похідної для розв'язування рівнянь. Текстові задачі на екстремум.
контрольная работа, добавлен 29.04.2018Характеристика нової модифікації з пам’яттю розв’язування задач мінімізації, за рахунок використання ідеї трикоркових ітераційних методів. Обґрунтування збіжності методу, практична реалізація і проведення порівняння з трикроковим методом Ньютона.
статья, добавлен 30.01.2017Вирішення тригонометричних рівнянь у шкільному курсі математики: методичні особливості вивчення теми. Числові функції та їх властивості. Втрачанні та сторонні корені, перевірка знайдених розв’язків. Приклади розрахунків із складними нерівностями.
курсовая работа, добавлен 21.05.2009