О некоторых классах N-связностей многообразий Кенмоцу
Внутренняя связность и N-связность. Равенство, характеризующее многообразие Кенмоцу. Структура многообразия Кенмоцу. Определение допустимых тензорных полей. Контактная метрическая структура. Фундаментальная форма структуры кососимметрического тензора.
Подобные документы
Почти контактные метрические многообразия специального вида. Тензорное поле кручения внутренней связности. Структуры, возникающие на распределение нулевой кривизны сасакиевых многообразий. Трансверсальная составляющая тензора кривизны некоторой связности.
статья, добавлен 17.07.2018Рассмотрение понятия внутренней связности, определение тензора кривизы Схоутена и изучение его свойств. Изучается строение тензора Схоутена SQS-многообразия. Определение продоложенной почти контактной метрической структуры на распределении многообразия.
статья, добавлен 15.07.2018Исследование структуры, естественным образом возникающей на распределениях нулевой кривизны сасакиевых многообразий. Характеристика понятия кососимметрического тензора. Преобразование компонент допустимого тензорного поля в адаптированных координатах.
статья, добавлен 17.07.2018Понятие допустимой (почти) пара-гиперкомплексной структуры. Субримановы многообразия контактного типа с распределением нулевой кривизны. Внутренняя линейная связность. Коэффициенты внутренней метрической связности. Нулевой тензор кривизны Схоутена.
статья, добавлен 03.03.2018Рассмотрение почти контактных метрических многообразий с нулевым тензором Схоутена. Определение дифференцирования допустимых тензорных полей. Использование адаптированных координат. Векторные поля линейно независимые в области определения нужной карты.
статья, добавлен 02.03.2018Граф как система объектов произвольной природы (вершин) и связок (ребер), соединяющих пары этих объектов. Определение связности графа. Нахождение наибольшего числа непересекающихся цепей. Нахождение наибольшего числа непересекающихся по ребрам путей.
реферат, добавлен 18.12.2022Ориентированные, неориентированные и смешанные графы. Понятие деревьев и их основные свойства, связность вершин, ацикличность. Определения путей в графе. Решение задачи по определению числа путей заданной длины, составление компьютерной программы.
курсовая работа, добавлен 18.12.2014Топологическое и метрическое пространство, база топологии, связность и компактность. Стрелка Зоргенфрея, доазательство её топологичности, метризуемость и хаусдорфовость. Прямая Зоргенфрея, база топологии, метризуемость, связность и компактность прямой.
реферат, добавлен 31.10.2014Проведение исследования контактного метрического многообразия со структурой произведения специального вида. Изучение понятия внутренней связности и определение тензора кривизны Схоутена. Характеристика коэффициентов внутренней линейной связности.
статья, добавлен 17.07.2018Многообразие конфигураций динамической системы с неинтегрируемой линейной связью. Геометрическое описание динамической системы с неинтегрируемой линейной связью с привлечением лагранжева и гамильтонова формализма. Частные случаи римановых многообразий.
статья, добавлен 15.07.2018Простейшие геометрические характеристики векторных полей: векторные линии, поток, дивергенция, циркуляция и вихрь. Частный случай электромагнитного поля. Гравитационное и тензорное поля. Примеры скалярных полей на трёхмерном и плоском пространстве.
эссе, добавлен 26.01.2017Доказательство отсутствия абсолютно трианалитических торов в обобщённом многобразии Куммера. Обобщение основных результатов Гуана для гиперкэлеровых многообразий большей размерности и получение ограничений на числа Бетти гиперкэлеровых многоообразий.
диссертация, добавлен 28.12.2016Построение продолженной почти контактной метрической структуры на распределении почти контактной метрической структуры. Полный лифт инфинитезимальной изометрии структуры как инфинитезимальная изометрия продолженной структуры. Доказательство теоремы.
статья, добавлен 25.11.2016Использование теории графов для представления отношений между элементами сложных структур различной природы. Определение связности темпорального графа. Применение метода Мальгранжа для нахождения максимальных компонент сильной связности четких графов.
статья, добавлен 19.01.2018Разработка теоремы, утверждающей, что заданная структура определяет на многообразии D структуру косимплектического Би-метрического многообразия тогда, когда распределение D многообразия M является распределением нулевой кривизны. Доказательство теоремы.
статья, добавлен 02.03.2018Определение касательного вектора к многообразию в произвольной точке. Условия существования непрерывной кривой в трехмерном евклидовом пространстве. Тензоры как важнейший из классов величин, числовая запись которых меняется при изменении координат.
контрольная работа, добавлен 01.09.2017Изучение гладких многообразий. Примеры замкнутых поверхностей. Теорема Эйлера о многогранниках. Определение проективной плоскости по Риману. След движения окружности по плоскости. Алгебраическая топология многообразий. Группы гомотопий и гомологий.
книга, добавлен 25.11.2013Определение графов и их элементы. Связанные графы, оценка числа их ребер через число вершин и компонент связности. Обходы графов, оценка числа помеченных эйлеровых графов. Изучение планарных и двудольных графов. Основные свойства деревьев, их кодирование.
учебное пособие, добавлен 15.10.2016Основы геометрии распределения Картана M в проективном пространстве. Теория двойственных линейных связностей, индуцируемых при различных классических оснащениях распределения Картана M. Пути приложения аффинных связностей к изучению сопряженной ткани.
автореферат, добавлен 17.12.2017Алгебра Лейбница как векторное пространство с билинейным произведением, в котором выполняется известное тождество. Пример нинельпотентного многообразия алгебр Лейбница с условием энгелевости порядка р. Его использование для поля нулевой характеристики.
статья, добавлен 31.05.2013Распределение m-мерных плоскостей с заданным метрическим тензором в n-мерном проективном пространстве. Изучение объекта касательной связности в адаптированном репере. Определение аффинной распределенной связности как обобщенной связности Леви-Чивита.
статья, добавлен 29.04.2019Изучение основополагающих понятий теории графов: ориентированный граф и маршрут, орцепь, орцикл и сильная связность. Рассмотрение понятия эйлерова орграфа и доказание основной теоремы о таких графах. Анализ приложения орграфов к теории цепей Маркова.
контрольная работа, добавлен 29.01.2014Изучение ориентированного конечного графа. Характеристика инцидентности ребра и вершины. Основы построения матриц смежности и инцидентности. Рассмотрение примеров объединения графов. Анализ условий и компонентов связности. Изучение эйлеровых цепей.
презентация, добавлен 31.10.2013Знакомство с наиболее распространенными идеями обобщения конструкции Сасаки на случай нечетной размерности. Рассмотрение основных способов определения геодезической пульверизации связности над распределением и N-продолженной метрической связности.
контрольная работа, добавлен 25.11.2016- 25. Понятие тензора
Тензор как объект линейной алгебры. Общее определение тензора. Анализ тензоров первого и второго ранга, тензоров напряжения. Риманова метрика. Линейные операторы на векторах. Тензоры типа (0, k). Требования к ковариантному дифференцированию тензоров.
контрольная работа, добавлен 01.09.2017