Математический анализ
Изучение особенностей операций над множествами. Характеристика метода математической индукции. Рассмотрение аспектов применения бинома Ньютона. Анализ способ решения примером с комплексными числами и пределами. Методы вычисления производной и интеграла.
Подобные документы
Операции над множествами. Свойства функции одной переменной. Основные теоремы о пределах. Производная функции одной переменной. Дифференциал функции. Применение производной. Действия над комплексными числами. Интегрирование тригонометрических выражений.
курс лекций, добавлен 28.06.2014Понятие математической индукции. Полная и неполная индукция. Дедуктивный и индуктивный методы рассуждений. Обнаружение математических закономерностей Суть и условия применения метода математической индукции в образовательном процессе, в решении задач.
контрольная работа, добавлен 17.09.2009Метод математической индукции в решении задач на делимость. Применение метода математической индукции к суммированию рядов и доказательству неравенств. Решение геометрических задач на вычисление. Роль индуктивных выводов в экспериментальных науках.
курсовая работа, добавлен 13.10.2017Рассмотрение способов введения в математический анализ фундаментальных пределов. Дифференциальное исчисление тригонометрической функции. Первый и второй замечательные пределы. Математический поиск доказательства обоих пределов на основе бинома Ньютона.
статья, добавлен 25.11.2016Особенности метода математической индукции, его широкое применение при доказательстве теорем, тождеств, неравенств, к суммированию рядов, геометрическим задачам и задачам на делимость натуральных чисел. Примеры применения метода математической индукции.
реферат, добавлен 15.12.2011Понятие определенного интеграла. Описание классов интегрируемых функций. Анализ свойств определенного интеграла и методов его вычисления. Примеры вычисления интеграла при помощи формулы Ньютона–Лейбница, замены переменной, интегрирования по частям.
конспект урока, добавлен 18.04.2016Исследование этапов вычисления определенных интегралов с помощью формулы Ньютона-Лейбница. Нахождение первообразной подынтегральной функции. Доказательство основной теоремы анализа. Характеристика операций дифференциального и интегрального исчислений.
презентация, добавлен 18.09.2013Формула Ньютона-Лейбница как один из ключевых элементов математического анализа и основа для интегрального исчисления. Характеристика теоремы о среднем значении для определенного интеграла. Определение производной как предела разностного отношения.
доклад, добавлен 02.11.2014Способы вычисления членов ряда Фибоначчи Sn, начиная с S6. Критерии затраты времени на нахождение ответа, количества операций над многозначными числами и объема вычислений. Выполнение операций над многозначными числами. Проведение поразрядных операций.
реферат, добавлен 13.07.2015- 10. Метод Ньютона
Общая характеристика метода Ньютона, знакомство с особенностями применения. Анализ способов записи формального представления по формуле Тейлора, основные проблемы. Рассмотрение процесса вычисления приближенного значения корня, использование выражений.
лабораторная работа, добавлен 02.10.2013 Характеристика особенностей метода математической индукции и аксиомы Пеано. Аспекты вычисление сумм и произведений. Методика доказательства тождеств и неравенств с помощью математической индукции. Анализ числа отображений k-множества в m-множество.
учебное пособие, добавлен 25.11.2013Рассмотрение определения монотонных и немонотонных последовательностей. Использование формулы бинома Ньютона в расчете предела числа е. Подпоследовательности и их свойства. Изучение доказательства теоремы Больцано-Вейерштрасса в математическом анализе.
презентация, добавлен 16.10.2014Понятие, определение и свойства неопределенного интеграла. Представление рациональной функции в виде суммы простейших дробей. Интегрирование простейших дробей. Понятие дифференциального бинома. Примеры вычисления интегралов от дифференциального бинома.
курсовая работа, добавлен 10.12.2017Интеграл Римана - важнейшее понятие математического анализа. Характеристика геометрического смысла данного выражения. Определение формулы Ньютона-Лейбница. Риманова сумма в пределе при измельчении разбиения - результат вычисления площади подграфика.
контрольная работа, добавлен 10.05.2016Суть метода математической индукции в решении задач на делимость, суммирование рядов, доказательства неравенств, исчислениям в геометрии, в теории чисел и алгебре. Теоремы разбиения треугольников и карта пересечения контуров окружностей на плоскости.
реферат, добавлен 06.04.2009Значение модуля производной функции. Вычисления со строгим учетом предельных абсолютных погрешностей. Преобразование системы к виду, необходимому для применения метода Зейделя. Определение абсолютной погрешности для приближенного решения системы.
контрольная работа, добавлен 24.05.2012Изучение особенностей интегральных уравнений, которые в совокупности с численными методами их решения являются средством исследования и математического моделирования задач математической физики. Изучение метода моментов, итераций, Ритца, Келлога.
курсовая работа, добавлен 21.04.2015Индуктивный и дедуктивный методы рассуждений в основе математического исследования. Понятия полной и неполной индукции. Области применения, метод и принцип математической индукции. Решение примеров, доказательства равенств, неравенств, деления чисел.
реферат, добавлен 30.10.2010Решение систем линейных уравнений методом Крамера. Матрицы и операции над векторами. Плоскости и прямая в пространстве. Введение в математический анализ. Дифференциальное исчисление функции. Методы вычисления неопределенного и определенного интеграла.
учебное пособие, добавлен 13.01.2014Изучение формулы Ньютона-Лейбница и способа вычисления определенного интеграла с ее помощью. Вычисление площадей плоских фигур и длины дуги кривой. Приближенное вычисление определенного интеграла. Вычисление двойного интеграла в полярных координатах.
курсовая работа, добавлен 13.11.2011Рассмотрение подходов к изучению моделирования. Методы имитации случайных величин. Этапы построения математической модели. Проблема оценки внешней среды. Характеристика особенностей имитационного моделирования. Анализ аспектов генетических алгоритмов.
реферат, добавлен 18.01.2014Применение законов сложения и умножения и вычисления результата примеров. Доказывание истинности равенства методом математической индукции. Теоретико-множественное обоснование вычитания и умножения. Натуральный смысл числа в результате измерения.
контрольная работа, добавлен 21.05.2014Примеры неприменимости метода неполной индукции в математике. Теоремы, приводящие к доказательству методом математической индукции. Описание способов доказательств утверждений в математике. Открытие общих закономерностей наблюдениями и методом индукции.
контрольная работа, добавлен 24.11.2012Характеристика общих понятий теории множеств. Изучение основных операций над множествами. Изучение соответствия между множествами, отображения. Анализ кортежей, декартовых произведений. Бинарные отношения и их свойства. Описание элементов комбинаторики.
презентация, добавлен 27.01.2017- 25. Множества чисел
Алгебраические операции с комплексными числами. История развития представления человека о числах, их прикладное значение в рамках научного познания. Основные действия над комплексными числами. Применение сопряженных чисел и примеры их использования.
презентация, добавлен 05.12.2016