Нелінійне програмування
Постановка сепарабельних, квадратичних задач нелінійного програмування. Метод множників Лагранжа. Необхідні умови існування сідлової точки. Задача з лінійною цільовою функцією й нелінійною системою обмежень. Вивчення класичної методики оптимізації.
Подобные документы
Алгоритм решения задачи на безусловный экстремум с использованием необходимых и достаточных условий. Метод множителей Лагранжа как один из общих подходов, используемых при решении задач оптимизации на основании теории дифференциального исчисления.
дипломная работа, добавлен 26.07.2018История применения графического метода для решения задач. Рассмотрение различных типов задач, методом решения которых может являться график. Основные приемы решения задач с помощью графического метода. Преимущества и недостатки графического метода.
реферат, добавлен 12.07.2020Особливості застосування математичної теорії в програмуванні. Інтерполювання функцій алгебраїчними многочленами. Створення програми, яка демонструє інтерполювання функції в заданих вузлах методом Лагранжа. Загальна задача апроксимації та інтерполяції.
курсовая работа, добавлен 23.04.2011Аналіз методів отримання нелінійного рівняння Фоккера-Планка. Визначення еволюційних рівнянь для першого і другого статистичних моментів. Характеристика скейлінгових законів руху для системи вільних частинок і дослідження картини переходів в системі.
статья, добавлен 23.10.2010Постановка задачи одномерной безусловной оптимизации. Алгоритм пассивного и активного поиска минимума. Методы поиска, основанные на аппроксимации целевой функции. Программная реализация сравнения методов оптимизации. Описание процесса отладки программы.
диссертация, добавлен 19.06.2015Постановка задачи использования ресурса. Алгоритм решения, основные этапы и подходы к реализации данного процесса. Исходные данные и результаты решения некоторых задач о составлении рациона питания. Понятие переменной задачи, системы ограничений.
контрольная работа, добавлен 09.09.2012Постановка задачи аппроксимации и интерполяции функций. Общее понятие обобщенной степени и конечных разностей. Интерполяционные формулы Ньютона. Интерполяционный многочлен Лагранжа. Метод наименьших квадратов для обработки результатов экспериментов.
контрольная работа, добавлен 27.09.2017Алгоритм решения задачи о назначениях, предполагающий минимизацию ее целевой функции, поиск оптимального решения. Венгерский метод - один из интереснейших и наиболее распространенных методов решения транспортных задач. Описание алгоритма данного метода.
курсовая работа, добавлен 14.06.2011- 59. Параметричні задачі та стійкість при моделюванні евклідовими комбінаторними задачами оптимізації
Алгоритми розв’язування задач з параметром у лінійних цільових функціях, системах обмежень, розв’язування узагальнених параметричних задач на цих множинах, модифікований алгоритм побудови опуклої оболонки, новий критерій i-граней довільного многокутника.
автореферат, добавлен 24.02.2014 Розробка ефективних методів розрахунку областей стійкості дискретних систем для задач з обмеженою та гарантованою чутливістю. Оцінювання областей початкових умов та постановка задач гарантованої чутливості, що охоплюються алгоритмами практичної стійкості.
статья, добавлен 30.01.2017Вдосконалення математичної моделі задачі оптимізації розміщення орієнтованих прямокутників для класу неперервно диференційованих функцій, цілі, розробка чисельних методів їх розв’язання. Розробка програмного забезпечення для розв’язання задач оптимізації.
автореферат, добавлен 28.08.2014Встановлення існування та єдиності розв'язку оберненої задачі визначення залежного від часу коефіцієнта при похідній за часом в одновимірному параболічному рівнянні. Задача визначення невідомого коефіцієнта, коли умови перевизначення є нелокальними.
автореферат, добавлен 25.08.2015Дослідження нетривіального зв’язку між нелінійною системою Деві-Стюартсона і матричною ієрархією Бюргерса. Узагальнення відомих моделей теорії солітонів разом з їх зображеннями Лакса в алгебрі скалярних і матричних інтегродиференціальних операторів.
автореферат, добавлен 29.07.2014Математическая постановка задач оптимального управления. Понятие функционала, его свойства и виды: Лагранжа, Майера, Больца. Понятие оптимальной ширины полосы пропускания системы. Основы вариационного исчисления. Условия относительного экстремума.
курс лекций, добавлен 19.09.2017Понятие о симплекс-методе и способы нахождения базисного решения. Определение крайней точки выпуклого множества. Преобразование Гаусса-Жордана и его применение. Симплекс-метод с искусственным базисом (М-метод). Исследование функции f(х) на экстремум.
презентация, добавлен 09.07.2015Поняття апроксимування функції та його використання при обчисленнях на ЕОМ. Постановка задачі та інтерполяційний многочлен у формі Лагранжа. Вимоги до обчислювальних алгоритмів. Метод обернених різниць Тіле та модифікований алгоритм Течера-Тьюкі.
реферат, добавлен 14.02.2010Использование алгебраического метода решения задач на построение в теории конструктивных задач. Определение взаимосвязи алгебры и геометрии. Обзор примеров задач на построение и схем их решения. Построение отрезков, заданных основными формулами.
курсовая работа, добавлен 25.01.2017Миссии к точкам либрации L1 и L2. Исследования перелетов КА между коллинеарными точками либрации. Миссия GENESIS. Уравнения движения тела наименьшей массы в круговой ограниченной задаче трех тел. Устойчивые и неустойчивые многообразия - алгоритм расчета.
курсовая работа, добавлен 09.08.2018Умови існування та єдиності розв'язку нелокальної крайової задачі для систем лінійних функціонально-диференціальних рівнянь загального вигляду. Визначення локалізації розв'язків у множині функцій з обмеженим ростом та дослідження питання про їх єдиність.
автореферат, добавлен 27.08.2015Классические трудности, возникающие при решении расчетных задач, методология системного анализа их условий. Классификация учебных расчетных задач, способы математического описания заданной ситуации. Ориентировочные основы обобщенного метода решения.
курсовая работа, добавлен 30.07.2010Понятие условного экстремума и способы его определения. Разработка алгоритма нахождения экстремума функции методом множителей Лагранжа. Применение данного метода при составлении плана выпуска изделий, обеспечивающего максимальную прибыль от их реализации.
курсовая работа, добавлен 20.10.2012- 72. Численные методы
Практическое решение задачи Коши в MathCAD. Исправленный метод Эйлера. Метод Рунге-Кутта. Задача Коши для обыкновенного ДУ второго порядка. Задача выбра параметров, представляющих собой погрешность приближенного равенства. Нахождение значения функций.
курсовая работа, добавлен 11.07.2010 Основные правила составления двойственных задач. Связь между решениями прямой и двойственной задач. Геометрическая интерпретация двойственной задачи, ее примеры. Анализ устойчивости двойственных оценок. Двойственный симплекс-метод, области его применения.
лекция, добавлен 06.09.2017Простейшая задача вариационного исчисления. Основные методы выведения уравнения Эйлера-Бернулли. Необходимые условия второго порядка для статистических задач в вариационном исчислении Лежандра. Условия Вейерштрасса для точки излома допустимой траектории.
презентация, добавлен 21.08.2015Побудова еквівалентної крайової задачі з параметрами та лінійними крайовими умовами, що розглядається з певною системою визначальних рівнянь. Схема розв’язків багатоточкових крайових задач шляхом зведення їх до двоточкових, застосовуючи параметризацію.
автореферат, добавлен 25.08.2014