Элементы теории вероятности

Понятие, история и свойства вероятности как степени возможности наступления происшествия. Зависимые и независимые события. Теорема умножения вероятности. Относительная частота события. Математическое ожидание и формула Бернулли. Закон больших чисел.

Подобные документы

  • Изучение элементов комбинаторики. Случайные события и их вероятности. Классическая формула вероятностей. Последовательность независимых испытаний. Применение формулы Бернулли. Закон распределения случайных величин. Математическое ожидание и дисперсия.

    контрольная работа, добавлен 27.11.2017

  • Вероятность события. Комбинаторика. Правила сложения и умножения вероятностей. Зависимые и независимые события. Формулы полной вероятности и Байеса. Случайные величины и законы их распределения. Непрерывные случайные величины и законы их распределения.

    курсовая работа, добавлен 19.10.2014

  • Определение и проверка вероятности предельных теорем, а именно теоремы Бернулли и закона больших чисел Чебышева. Определение коэффициентов простой линейной регрессии, полученных в ходе проведенных испытаний, анализ и проверка статистических гипотез.

    курсовая работа, добавлен 06.08.2013

  • Определение вероятности случайного события, классической вероятности, статистической. Частота случайного события. Сумма и произведение двух событий. Функции распределения и плотности, начальные и центральные моменты. Мода, медиана, асимметрия и эксцесс.

    контрольная работа, добавлен 12.04.2014

  • Доказательство математического выражения, позволяющего находить вероятность появления события при независимых испытаниях. Варианты применения теоремы Бернулли при решении практических задач. Расшифровка модуля вероятности отклонения частоты события.

    краткое изложение, добавлен 12.04.2014

  • Анализ классического определения вероятности. Описание теорем сложения и умножения вероятностей. Формула полной вероятности и формула Байеса. Изучение дискретных случайных величин. Нормальный закон распределения. Варианты задач по теории вероятности.

    методичка, добавлен 27.05.2016

  • Определение вероятности, следствие из принципа практической невозможности маловероятных событий. Теорема Муавра–Лапласа. Закон распределения случайной величины. Дискретная случайная величина. Математическое ожидание дискретной случайной величины.

    контрольная работа, добавлен 12.11.2015

  • Предмет и понятия теории вероятностей. Относительная частота случайного события и ее устойчивость. Теорема умножения и сложения вероятностей. Основные понятия и методы математической статистики. Генеральная совокупность и выборка. Вариационный ряд.

    учебное пособие, добавлен 24.06.2014

  • Применение теории вероятности для решения технических задач, характеристика ее основных понятий. Основы теории множеств, алгебра событий. Аксиомы теории вероятностей, ее правила. Теорема сложения и умножения вероятностей. Формула полной вероятности.

    лекция, добавлен 30.11.2016

  • Математическое ожидание, дисперсия, коэффициенты корреляции - основные характеристики совместного распределения нескольких случайных величин. Специфические особенности применения теоремы умножения вероятностей для рассмотрения составных испытаний.

    реферат, добавлен 05.12.2021

  • Определение вероятности случая при заданном исходе. Вычисление возможности наступления всех последовательностей событий, приводящих к требуемому результату. Построение ряда распределения случайной величины. Расчет ее математического ожидания и дисперсии.

    задача, добавлен 09.12.2015

  • Расчет вероятности своевременного прибытия автобусов. Применение теорем умножения вероятностей независимых событий и сложения вероятностей несовместимых событий. Применение формулы полной вероятности при определении вероятности дефекта укупорки банки.

    контрольная работа, добавлен 26.05.2015

  • Среднеквадратичное отклонение как совокупность наибольшего сгущения значений случайной величины. Частота как число случаев появления возможного события при определенных условиях. Классическое определение вероятности наступления случайного события.

    контрольная работа, добавлен 07.11.2017

  • События, основные распределения в теории вероятностей. Операции над событиями. Формула полной вероятности. Формула Бейеса и Бернулли, повторение испытаний. Случайные величины, закон распределения дискретной случайной величины, биноминальное распределение.

    курсовая работа, добавлен 21.11.2012

  • Определение вероятности по формулам Бернулли и Байеса. Проведение исследования интегрального закона распределения. Вычисление математического ожидания, дисперсии и среднеквадратического отклонения. Особенность построения статистического разделения.

    контрольная работа, добавлен 24.05.2016

  • Проблема вычисления вероятности случайного события и его роль при проектировании закономерности производственных процессов и при поиске эффективных алгоритмов управления ими. Особенности аналитического вывода формулы оценки вероятности случайного события.

    статья, добавлен 30.01.2021

  • Пространство элементарных событий. Случайное событие как результат опыта. Классическое и аксиоматическое определение его вероятности. Основные формулы комбинаторики. Независимые и зависимые явления. Априорные вероятности гипотез. Формула Байеса.

    презентация, добавлен 29.09.2017

  • Классическое определение вероятности. Условная вероятность и теорема умножения вероятностей. Формула Бейеса и Бернулли. Последовательные испытания и дискретные случайные величины. Нормальное распределение, дисперсия и среднее квадратическое отклонение.

    контрольная работа, добавлен 25.01.2015

  • Расчет вероятности отказа с помощью формулы Бернулли. Теоремы сложения и умножения вероятностей. Классическое и геометрическое определение вероятности. Изменения порядка интегрирования. Определение объема тела, заданного ограничивающими его поверхностями.

    контрольная работа, добавлен 24.01.2012

  • Возникновение теории вероятностей как науки. Аксиоматический подход и элементарные понятия теории множеств. Операции сложения и умножения событий. Решение типовой задачи на формулу Байеса. Формула полной вероятности в обеспечении качества продукции.

    контрольная работа, добавлен 25.05.2015

  • Основные подходы к определению вероятности события и формулы комбинаторики. Дискретное распределение вероятности и понятие математического ожидания. Дисперсия и стандартное отклонение. Биноминальный закон распределения. Непрерывные случайные величины.

    учебное пособие, добавлен 25.01.2012

  • Понятие Бернулли о законе больших чисел. Предельные теоремы теории вероятностей и объяснение природы устойчивости частоты появлений события. Неравенство Маркова в теории вероятностей. Сущность математического ожидания. Практическое применение закона.

    реферат, добавлен 05.06.2012

  • Случайное событие, его частота и вероятность. Теоремы сложения и умножения вероятностей. Формула полной вероятности (формула Бейеса). Дискретные случайные величины. Математическое ожидание и его свойства. Дисперсия непрерывной случайной величины.

    методичка, добавлен 05.09.2012

  • Анализ решения задач на комбинаторику. Описание задач по классической вероятностной модели, геометрической вероятности. Описание основных формул теории вероятности. Повторные независимые испытания, теорема Бернулли. Дискретные случайные величины.

    задача, добавлен 05.05.2015

  • Вычисление математической вероятности, нахождение независимых событий по теореме умножения вероятностей. Определение возможной вероятности того, что ни один из трех станков не потребует внимания рабочего, расчет вероятности поломки для каждого станка.

    задача, добавлен 13.10.2014

Работы в архивах красиво оформлены согласно требованиям ВУЗов и содержат рисунки, диаграммы, формулы и т.д.
PPT, PPTX и PDF-файлы представлены только в архивах.
Рекомендуем скачать работу и оценить ее, кликнув по соответствующей звездочке.