Предельная теорема для копул преобразований независимости t-распределения Стьюдента

Изучаются копулы, полученные в результате преобразования независимости случайных векторов с распределением Стьюдента, а также для схемы серий зависимых случайных величин, связанных такими IT-копулами, доказаны варианты центральной предельной теоремы.

Подобные документы

  • Критерии определения независимости и ортогональности собственных векторов. Свойства расстояния. Простейшие операции над множествами. Последовательности и функции в пространстве Rn. Теорема Гейне. Непрерывность на множестве. Понятие частных производных.

    курсовая работа, добавлен 17.01.2011

  • Формальное определение случайной функции как семейства случайных переменных. Характерный вид реализаций различных классов случайных функций. Типы случайных последовательностей. Модели скалярных и точечных процессов. Пространственно-временные поля.

    реферат, добавлен 11.01.2020

  • Формирование вероятностно-статистической модели. Закон распределения случайных величин. Проверка соответствия выбранной модели экспериментальным данным с помощью критериев согласия. Анализ дискретных моделей случайных характеристик объектов эксплуатации.

    контрольная работа, добавлен 09.01.2021

  • Математическое ожидание, дисперсия, коэффициенты корреляции - основные характеристики совместного распределения нескольких случайных величин. Специфические особенности применения теоремы умножения вероятностей для рассмотрения составных испытаний.

    реферат, добавлен 05.12.2021

  • Теоретические аспекты понятия "вероятностные пространства". Функции и типы распределения, их числовые характеристики и особенности преобразования случайных величин. Случайные процессы с непрерывным временем: общие определения и процесс Пуассона.

    курс лекций, добавлен 20.12.2012

  • Определение вероятности появления события во множестве независимых опытов. Расчет математического ожидания и дисперсии величины Х. Расчет и построение графика функции распределения. Построение графиков случайных величин, определение плотности вероятности.

    контрольная работа, добавлен 21.09.2023

  • Равновероятная модель случайных подстановок: результаты. Асимптотическая нормальность чисел конгруэнтных циклов в d-параметрической модели случайных подстановок. Статистические задачи для случайных подстановок с цензурированными данными. Проверка гипотез.

    диссертация, добавлен 28.12.2016

  • Случайные события, теоремы сложения и умножения вероятностей. Виды случайных величин. Математическое ожидание и дисперсия дискретной случайной величины. Закон больших чисел. Плотность распределения вероятностей. Нормальное и показательное распределение.

    курс лекций, добавлен 24.04.2015

  • Формула классической вероятности. Теоремы сложения и умножения вероятностей. Формула полной вероятности, Байеса, Бернулли, Пуассона. Числовые характеристики дискретных случайных величин: дисперсия и пр. Законы распределения непрерывной случайной величины.

    курсовая работа, добавлен 04.01.2016

  • Методы обработки экспериментальных данных. Случайные величины и законы распределения. Основные свойства плотности распределения. Числовые характеристики случайных величин. Кривые распределения с различной степенью крутости. Виды асимметрии распределений.

    курсовая работа, добавлен 11.11.2015

  • Классификация случайных процессов. Основные понятия Марковских случайных процессов. Математический аппарат дискретных Марковских цепей. Понятие однородной цепи Маркова. Переходные вероятности и матрица перехода. Теорема о предельных вероятностях.

    курсовая работа, добавлен 10.04.2012

  • Ознакомление с общими характеристиками теории вероятности. Применение теоремы Бернулли, формулы полной вероятности, центральной предельной теоремы. Сложение и умножение вероятностей. Нахождение оптимального решения, руководствуясь "правилом Лапласа".

    контрольная работа, добавлен 17.11.2015

  • Анализ классического определения вероятности. Описание теорем сложения и умножения вероятностей. Формула полной вероятности и формула Байеса. Изучение дискретных случайных величин. Нормальный закон распределения. Варианты задач по теории вероятности.

    методичка, добавлен 27.05.2016

  • Случайные величины, сконструированные на основе нормального распределения, которые наиболее часто встречаются в математической статистике. Распределение случайных величин в статистических таблицах. Функция распределения двумерной случайной величины.

    контрольная работа, добавлен 27.03.2022

  • Особенности способов обработки результатов прямых и косвенных измерений. Рассмотрение методов уменьшения влияния случайных ошибок. Общая черта измерений как невозможность получения истинного значения измеряемой величины. Значения критерия Стьюдента.

    контрольная работа, добавлен 17.11.2012

  • Условные законы распределения непрерывных случайных величин, имеющих непрерывное совместное распределение. Условное математическое ожидание случайной величины. Сущность корреляции. Свойства ковариации. Нормальный закон распределения на плоскости.

    реферат, добавлен 26.01.2012

  • Анализ свойств функции распределения случайных величин в зависимости от их вида. Использование непрерывной и дискретной величин в инструментарии таможенной статистики. Показатели рассеяния возможных значений. Свойства математического ожидания и дисперсии.

    курсовая работа, добавлен 12.09.2014

  • Изучение предмета теории вероятностей. Понятия условной и полной вероятности, случайных величин. Характеристика генеральной совокупности и выборки, вариационного ряда. Описание методов точечной и интервальной оценки, дисперсионного анализа, корреляции.

    учебное пособие, добавлен 10.05.2016

  • Традиционный метод проверки однородности. Классические условия применимости критерия Стьюдента. Область применимости традиционного метода проверки однородности с помощью критерия Стьюдента. Критерий Крамера-Уэлча равенства математических ожиданий.

    статья, добавлен 20.05.2017

  • 3адача определения закона распределения случайной величины (или системы случайных величин) по статистическим данным. Статистическое описание и выборочные характеристики двумерного случайного вектора. Задача нахождения неизвестных параметров распределения.

    курсовая работа, добавлен 21.10.2017

  • Характеристика фундаментального понятия статистической теории и вероятности распределения случайных величин. Особенности интегральной функции равномерности закономерных размеров. Проведение исследования дискретного ряда накопленных относительных частот.

    методичка, добавлен 06.06.2017

  • Вычисление вероятности, полная группа событий. Построение ряда распределения и графика функции распределения, вычисление характеристик для заданной случайной величины. Построение выборки, гистограммы, функции распределения непрерывных случайных величин.

    контрольная работа, добавлен 02.04.2018

  • Скалярное произведение двух векторов и его свойства. Свойства операций над векторами. Теоремы об операциях над векторами, заданными в координатной форме. Правило сложения векторов. Свойства скалярного произведения. Определение равенства векторов.

    контрольная работа, добавлен 16.06.2010

  • Центральная предельная теорема для экстремальных характеров бесконечной симметрической группы и для планшерелевских представлений бесконечной унитарной группы. Анализ перемежающихся последовательностей Керова и случайных матриц. Доказательства теорем.

    диссертация, добавлен 28.12.2016

  • Закономерности случайных явлений. Методы количественной оценки влияния случайных факторов на различные явления. Операции над событиями и их свойства. Дискретные и непрерывные случайные величины. Ряд распределения вероятности дискретной случайной величины.

    курс лекций, добавлен 16.05.2016

Работы в архивах красиво оформлены согласно требованиям ВУЗов и содержат рисунки, диаграммы, формулы и т.д.
PPT, PPTX и PDF-файлы представлены только в архивах.
Рекомендуем скачать работу и оценить ее, кликнув по соответствующей звездочке.