Функция
Развитие понятия функции. Математический анализ и его две основные части: дифференциальное и интегральное исчисления. Определение функции и графика функции. Область определения и область значений функции. Виды функций: четные, нечетные, периодические.
Подобные документы
Особенности развития естествознания и математической науки. Определение и сущность функции в XVIII веке. Роль понятия функциональной зависимости в познании реального мира. Общее определение функции в XIX веке и новые шаги в дальнейшем развитии понятия.
реферат, добавлен 10.03.2012- 52. Предел функции
Изучение особенностей предела функции по Гейне. Исследование теорем о пределах. Рассмотрение методов избавления от неопределенности. Построение графиков элементарных функций. Характеристика предела функции в точке. Анализ сущности множества значений.
книга, добавлен 21.12.2014 Функции комплексной переменной и их значение. Понятие аналитической функции, дифференцирование первого и других равенств. Анализ функции комплексного аргумента. Основные теоремы о пределе и непрерывности вещественных функций в комплексных случаях.
реферат, добавлен 22.12.2011Вычисление значения функции в точках, подозрительных на глобальный экстремум. Нахождение наклонной асимптоты, точек, в которых производная функции равна нулю. Определение промежутков выпуклости и точек перегиба функции. Построение эскиза графика функции.
контрольная работа, добавлен 26.04.2012Анализ понятия и свойств непрерывных функций. Характеристика непрерывности некоторых элементарных функций. Классификация точек разрыва. Описание непрерывности функции в точке, на интервале и отрезке. Анализ экономического смысла непрерывной функции.
курсовая работа, добавлен 07.04.2016Определение предела функции f(x) в точке x0 по Гейне и Коши. Основные свойства пределов. Понятие предела функции в точке. Основные теоремы о пределах, признаки их существования. Определение предела частного и произведения двух функций, сложной функции.
контрольная работа, добавлен 27.04.2015Определение пределов последовательности и функции. Точки непрерывности и точки разрыва функции, производные и их приложения. Анализ примеров нахождения производных. Наибольшее и наименьшее значение функции на отрезке, ее исследование на экстремум.
контрольная работа, добавлен 23.01.2015Решение задач на применение закона Кулона. Теория вероятности, интегральная и дифференциальная функции распределения, нахождение дисперсии и критических точек графика функции. Построение графиков интегральной и дифференциальной функций величины.
контрольная работа, добавлен 05.01.2012Понятие числовой функции. Определение числовой последовательности как числовой функции на множестве натуральных чисел. Исследование функций на четность и нечетность. Поиск нулей и промежутков, понятие метода интервалов. Промежутки возрастания функции.
лекция, добавлен 27.04.2017Теории мультипликативных функций, определения и свойства данных функций, методы их суммирования. Рассмотрение результатов суммирования известной функции Эйлера j(n) и Мебиуса. Теорема Мертенса. Определение средних значений функций натурального аргумента.
дипломная работа, добавлен 29.10.2010Изучение четности и нечетности функции. Анализ нахождения наименьшего положительного периода функций. Определение промежутков знакопостоянства. Возрастание и убывание функций. Нахождение точек экстремума. Характеристика алгоритма исследования функции.
презентация, добавлен 22.03.2021Понятие показательной функции и методы построения ее графиков. Основные свойства функции: четность; убывание; ограничение сверху и снизу; непрерывность. Определение логарифмической функции в математическом анализе и теории дифференциальных уравнений.
презентация, добавлен 05.03.2012Тестовые задания, их виды и инструктивно-методическое обеспечение. Подготовка к тестированию и выведение оценки по его результатам. Вариант заданий открытого типа по теоретическому материалу "Интегральное исчисление функции действительной переменной".
дипломная работа, добавлен 09.11.2012Полное приращение функции. Полный дифференциал функции. Касательная плоскость и нормальный вектор. Точки экстремума функции. Частные производные первого и второго порядка от функции. Направляющие косинусы вектора. Тангенс угла наклона касательной.
контрольная работа, добавлен 06.06.2012Определение функции, ее свойства. Основные элементарные функции. Предел функции в точке, способы его вычисления. Вычисление предела отношения бесконечно малых функций. Раскрытие неопределенностей. Доказательство первого и второго замечательных пределов.
лекция, добавлен 29.09.2014- 66. Производная
Геометрический смысл производной. Правило нахождения экстремума. Точка перегиба графика функции. Общая схема исследования функции и построение ее графика. Касательная и нормаль к плоской кривой. Достаточные условия убывания и возрастания функции.
реферат, добавлен 26.06.2013 Основные правила дифференцирования. Производная сложной функции. Теорема об обратной функции. Таблица производных сложной функции. Дифференцирование функций, заданных параметрически, дифференциал функции. Понятие логарифмического дифференцирования.
презентация, добавлен 13.02.2016Изучение дифференциального и интегрального исчисления. Анализ применения Дзета-функции Римана в теории чисел. Определение понятия функции: закона, по которому каждому элементу множества X ставится в соответствие один или несколько элементов множества Y.
курсовая работа, добавлен 30.10.2010Свойства производственных функций и функций затрат. Эластичность как локальная характеристика, изменение ее значений. Обсуждение затрат длительного периода, использование функции Лагранжа. Полная эластичность линейно-однородной производственной функции.
лекция, добавлен 30.01.2017- 70. О функции Эйлера
Значение функции Эйлера в теории чисел и математике. Доказывание формулы Мертинга и изучение, на ее основе, точности аппроксимации среднего значения функции Эйлера соответствующим квадратичным полиномом. Понятие плотности значений функции Эйлера.
статья, добавлен 26.05.2017 Понятие производной, её геометрический смысл. Правила дифференцирования, производная сложной функции. Дифференциал функции, логарифмическое дифференцирование, правило Лопиталя. Производные высших порядков и их применение для исследования свойств функций.
методичка, добавлен 27.09.2012Операции над множествами. Свойства функции одной переменной. Основные теоремы о пределах. Производная функции одной переменной. Дифференциал функции. Применение производной. Действия над комплексными числами. Интегрирование тригонометрических выражений.
курс лекций, добавлен 28.06.2014Определение предела функции для бесконечно большой последовательности значений аргумента. Проколотая окрестность точки и ограничение функции. Произведение арифметических операций, имеющих предел. Вычисления замечательных пределов и дуги окружности.
лекция, добавлен 26.01.2014Определение числовой последовательности и ее предела. Свойства сходящихся последовательностей. Предел функции одной переменной. Основные правила вычисления пределов. Непрерывность функции в точке и на промежутке. Точки разрыва функции и их классификации.
шпаргалка, добавлен 07.09.2013Определение понятия предела функции для любой бесконечно большой последовательности. Характеристика ограниченности функций и арифметических операций, при условии наличия пределов. Изучение свойств бесконечно малых и больших математических функций.
лекция, добавлен 29.09.2013