Нелинейная регрессия
Выражение нелинейных соотношений между экономическими явлениями с помощью соответствующих нелинейных функций. Применение степенной функции в определении соотношений между явлениями. Спецификация модели. Отбор факторов построения множественной регрессии.
Подобные документы
Построение поля корреляции и гипотеза о форме связи. Уравнение линейной регрессии и экономическая интерпретация. Параметры уравнений степенной и гиперболической регрессий. Расчет индекса корреляции и детерминации. Модель регрессии и F-критерий Фишера.
контрольная работа, добавлен 18.02.2016Применение линейного регрессионного анализа для ситуаций с одной зависимой и одной независимой переменной. Проверка соблюдения необходимых условий для применения анализа линейной однофакторной регрессии. Построение точек на графике прямой регрессии.
презентация, добавлен 01.11.2013- 103. Компактная математическая макромодель технико-экономического и демографического развития Мир-Системы
Характеристика простой математической модели, которая описывает как демографическое, так и экономическое развитие Мир-Системы вплоть до 1973 г. на основе тех же самых допущений, что уже были сделаны М. Кремером (а именно - соотношений между ВВП).
статья, добавлен 15.09.2020 Изучение величины, выражающей зависимость среднего значения случайной величины от значений случайной величины. Проведение исследования сущности и цели регрессионного анализа. Определение коэффициентов линейного уравнения множественной регрессии.
презентация, добавлен 07.10.2020Линейная регрессионная модели. Парная регрессия. Дисперсионный анализ. Эластичность. Изучение качества регрессии Доверительные интервалы для оцененных параметров. Критерий Фишера значимости всей регрессии. Колеблемость признака. Показательная модель.
курсовая работа, добавлен 21.08.2008- 106. Эконометрика
Линейная модель парной регрессии и корреляции. Проверка существенности факторов и показатели качества регрессии. Методы оценки структурной формы модели. Автокорреляция уровней временного ряда. Моделирование сезонных колебаний, критерий Дарбина-Уотсона.
курс лекций, добавлен 27.11.2013 Прогнозирование с помощью моделей парной линейной, квадратичной регрессии. Статистическая значимость параметров регрессии и корреляции. Допущения и свойства оценок при использовании метода наименьших квадратов. Идентифицируемость структурных моделей.
лабораторная работа, добавлен 05.09.2013Описание и примеры системы эконометрических уравнений. Характеристика основных методов оценки параметров эконометрических моделей множественной регрессии. Основные принципы моделирования временных рядов. Изменения характера тенденции временного ряда.
контрольная работа, добавлен 17.10.2014Предмет и задачи эконометрического моделирования. Построение парных и множественных регрессионных моделей экономических процессов. Анализ модели множественной линейной регрессии. Характеристика особенностей эконометрических моделей интегрированного типа.
методичка, добавлен 14.05.2017Построение уравнения регрессии с помощью метода наименьших квадратов. Матричный подход в регрессионном анализе. Оценка вариации уравнения регрессии и проверка гипотез о наклоне и коэффициенте корреляции. Оценка математического ожидания значений отклика.
учебное пособие, добавлен 22.11.2012Построение поля корреляции, расчет параметров уравнения линейной регрессии, оценка тесноты связи. Сравнительная оценка силы связи фактора с результатом. Анализ линейных коэффициентов парной и частной корреляции. Уравнение множественной регрессии.
контрольная работа, добавлен 30.03.2010Решение задачи с помощью пакета Excel. Параметры уравнения линейной зависимости. Таблица дисперсионного анализа, коэффициенты детерминации. Средняя ошибка аппроксимации. Оценка значимости коэффициента корреляции и регрессии с помощью критерия Стьюдента.
контрольная работа, добавлен 11.10.2012Уравнение линейной парной регрессии. Качественная оценка тесноты связи величин на основе шкалы Чеддока. Алгоритм оценки статистической значимости уравнения регрессии в целом. Методика расчета гиперболической, полулогарифмической и степенной моделей.
контрольная работа, добавлен 17.04.2014Понятие парной и множественной регрессии. Суть метода наименьших квадратов для линейной регрессионной модели. Определение коэффициентов корреляции и эластичности. Средняя ошибка аппроксимации. Виды временных рядов. Гетероскедастичность случайных ошибок.
контрольная работа, добавлен 08.02.2022Экономическая интерпретация коэффициента регрессии. Проверка значимости параметров уравнения регрессии с помощью t-критерия Стьюдента. Коэффициенты детерминации и средние относительные ошибки аппроксимации. Прогнозирование среднего значения показателя.
контрольная работа, добавлен 30.11.2013Оценка качества статистической модели через среднюю ошибку аппроксимации и F-критерий Фишера. Теснота связи для линейного уравнения регрессии. Определение коэффициента множественной корреляции. Построение автокорреляционной функции временного ряда.
контрольная работа, добавлен 03.06.2014Разработка эконометрической модели в пакете Econometric Views. Расчет модели множественной регессии для всей совокупности независимых факторов методом наименьших квадратов. Определение коэффициентов эластичности и детерминации. Анализ характера остатков.
курсовая работа, добавлен 04.12.2013Построение поля корреляции, характеризующего зависимость валового регионального продукта на душу населения от размера инвестиций в основной капитал. Описание зависимостей продукции сельского хозяйства от различных факторов с помощью уравнения регрессии.
контрольная работа, добавлен 10.09.2012Безработица - макроэкономическая проблема, оказывающая наиболее прямое и сильное воздействие на каждого человека. Статистические индексы сезонности уровня безработного населения в России. Методика определения множественной модели линейной регрессии.
дипломная работа, добавлен 05.04.2015Построение поля корреляции, формулировка гипотезы о возможной форме и направлении связи. Расчет параметров парной линейной, степенной и линейно-логарифмической функций, а также параболы второго порядка. Построение уравнения регрессии и методы его решения.
лабораторная работа, добавлен 25.03.2012Методы расчета параметров выборочного уравнения линейной регрессии с помощью метода наименьших квадратов. Оценка статистической значимости коэффициента корреляции, используя критерий Стьюдента. Анализ тесноты связи с помощью показателя детерминации.
учебное пособие, добавлен 13.01.2016Определение среднего коэффициента эластичности и сравнительная оценка силы связи фактора с результатом. Расчет параметров линейного уравнения множественной регрессии. Определение коэффициентов автокорреляции уровней ряда первого и второго порядка.
контрольная работа, добавлен 16.04.2020На основе эмпирических данных из области финансов и кредита выбор двух показателей, один из которых будет выступать результативным признаком, другой - факторным признаком. Изучение взаимосвязи между данными признаками. Расчет параметров регрессии.
контрольная работа, добавлен 23.04.2018- 124. Основы эконометрики
Вычисление параметров уравнения линейной регрессии; экономическая интерпретация коэффициента регрессии. Проверка значимости параметров регрессии с помощью t-критерия Стьюдента. Запись системы одновременных уравнений и проверка их на идентифицируемость.
контрольная работа, добавлен 29.10.2012 Методы отбора экзогенных переменных и оценки качества полученного уравнения. Использование надстройки "Анализ данных" пакета MS Excel при построении моделей множественной регрессии. Предпосылки метода наименьших квадратов (условия Гаусса-Маркова).
лабораторная работа, добавлен 19.02.2016