Дискретные и непрерывные случайные величины
Анализ правил дифференцирования. Производные основных элементарных функций. Правило Лопиталя и его применение к вычислению пределов. Суть свойств неопределенного интеграла. Способы непосредственного подсчета вероятности. Главные элементы комбинаторики.
Подобные документы
Пространство элементарных событий и операции над случайными событиями. Основные элементы комбинаторики. Характеристика непрерывных случайных величин. Применение формулы полной вероятности и формулы Байеса. Закон больших чисел. Плотность вероятности.
учебное пособие, добавлен 29.10.2013Производная функции, ее геометрический и физический смысл. Основные правила дифференцирования. Производные основных элементарных функций. Инвариантная форма записи дифференциала. Уравнения кривых параметрической формы. Интегрирование элементарных дробей.
учебное пособие, добавлен 05.04.2011Расчет предела функции и ее производной. Понятие дифференциала и неопределенного интеграла. Примеры решения типовых задач по теории вероятностей. Случайные величины и их нормальное распределение. Регрессионный анализ. Проверка статистических гипотез.
методичка, добавлен 09.03.2015Свойства неопределенного интеграла. Применение метода подстановки для различных типов функций. Разложение интегральной функции. Формула понижения степени для интеграла. Интегрирование иррациональных функций. Подстановки Эйлера. Дифференциальные биномы.
контрольная работа, добавлен 22.12.2015Основные понятия теории вероятностей. Локальная теорема Лапласа, формула Пуассона, Бейса. Случайные величины и законы их распределения. Плотность распределения вероятности непрерывной случайной величины. Среднеквадратическое (стандартное) отклонение.
шпаргалка, добавлен 06.11.2009Классическое определение вероятности. Условная вероятность и теорема умножения вероятностей. Формула Бейеса и Бернулли. Последовательные испытания и дискретные случайные величины. Нормальное распределение, дисперсия и среднее квадратическое отклонение.
контрольная работа, добавлен 25.01.2015Построение графика функции спроса и предложения, нахождение координаты точки равновесия. Вычисление производных. Исследование и построение графика данной функции. Вычисление неопределенного интеграла. Установление расходимости несобственного интеграла.
контрольная работа, добавлен 21.10.2010Независимые события и правило умножения вероятностей. Анализ предельной теоремы Пуассона. Типичные законы распределения дискретных случайных величин. Особенность вероятностных векторов с самостоятельными компонентами. Сущность правила больших чисел.
курс лекций, добавлен 23.04.2016Рассмотрение функции распределения (интегральной). Характеристика функции плотности вероятности. Определение особенностей функции распределения для дискретных случайных величин. Исследование моментов случайных величин. Обзор характеристических функций.
презентация, добавлен 29.09.2017Подсчет числа различных комбинаций как основная цель и задача комбинаторики. Классическая формула для нахождения вероятности. Перестановки элементов множества как упорядоченные элементы из всех элементов множества. Сочетание элементов вероятности.
презентация, добавлен 01.11.2013Дискретные и непрерывные виды случайных величин, законы распределения вероятностей их значений. Биноминальное распределение, формулы Бернулли и Пуассона. Понятие математического ожидания. Необходимые и достаточные условия независимости случайных величин.
контрольная работа, добавлен 02.02.2010Случайное событие, его частота и вероятность. Теоремы сложения и умножения вероятностей. Формула полной вероятности (формула Бейеса). Дискретные случайные величины. Математическое ожидание и его свойства. Дисперсия непрерывной случайной величины.
методичка, добавлен 05.09.2012Понятие математической функции. Основные элементарные функции. Поиск области определения функций. Предел числовой последовательности, а также функции в бесконечности и точке. Вычисление пределов. Применение бесконечно малых величин к вычислению пределов.
методичка, добавлен 21.03.2013Применение закона распределения дискретной случайной величины. Соответствие между возможными значениями и их вероятностями. Функция распределения вероятностей случайной величины. Плотность распределения вероятностей дискретной случайной величины.
реферат, добавлен 15.06.2014Фундаментальные концепции математики. Анализ элементарных функций и их классификация. Описание их свойств и характерные особенности графического представления. Практическое применение элементарных функций в различных сферах и примеры их использования.
реферат, добавлен 11.12.2023Равномерное стремление к предельной функции. Дифференцирование под знаком интеграла. Случай, когда пределы интеграла зависят от параметра. Применение правила Лейбница к вычислению производной по параметру интеграла. Исследование функции на непрерывность.
контрольная работа, добавлен 13.10.2013Характеристика основных правил комбинаторики. Исследование теоремы о включениях и исключениях. Особенность комбинаторного смысла числа перестановок. Анализ порядка выбора монет. Упрощение вычислительных действий как главная цель изучения бинома Ньютона.
лекция, добавлен 25.10.2019Дифференциал суммы, произведения и частного. Абсолютная погрешность приближенной величины. Понятие производной n-го порядка функции. Вывод правила дифференцирования неявных функций. Дифференцирование параметрически заданных функций, пример уравнений.
лекция, добавлен 22.01.2013Определение первообразной функции и неопределенного интеграла. Геометрический смысл неопределенного интеграла. Теорема о разложении правильной рациональной дроби на простейшие дроби. Метод неопределенных коэффициентов. Формула замены переменной.
контрольная работа, добавлен 27.08.2013Сущность события как элементарного множества пространства элементарных исходов. Характеристика основных видов: достоверный, невозможный. Классическое определение вероятности и понятие "классической схемы". Применение формулы Байеса и схема Бернулли.
лекция, добавлен 29.10.2013Использование правила суммы и правила произведения при решении задач комбинаторики. Классическое и геометрическое определение вероятности. Формула полной вероятности и формула Байеса. Схема и примеры повторных независимых испытаний (схема Бернулли).
учебное пособие, добавлен 16.02.2014Определение и условия существования определенного интеграла. Проведение исследования основных понятий и предложений теории пределов. Характеристика формулы Ньютона-Лейбница. Выражение остаточного члена теоремы Тейлора с помощью определенной величины.
курсовая работа, добавлен 17.12.2017Определение производной функции через предел. Общепринятые обозначения. Дифференцируемость. Геометрический и физический смысл производной. Производные высших порядков. Способы записи производных. Правила дифференцирования. Таблица производных функций.
реферат, добавлен 07.01.2023Соотношения между случайными событиями. Аксиоматическое и классическое определение вероятности, основные элементы комбинаторики. Теоремы умножения и сложения, вероятность суммы совместных событий. Основы формулы Бейеса, схема испытаний Бернулли.
учебное пособие, добавлен 12.03.2015Типы событий: достоверные, невозможные, случайные. Понятие, предмет исследования комбинаторики, история возникновения и развития соответствующего научного направления. Применение методов теории вероятностей в разных сферах. Основные комбинаторные задачи.
реферат, добавлен 03.05.2019