Методы построения моделей нелинейных процессов
Понятие и виды нелинейных моделей регрессии. Приведение нелинейной функции к линейному виду с помощью замены переменных и логарифмирования. Анализ влияния уровня инфляции на количество безработных с помощью парной нелинейной регрессии и линеаризации.
Подобные документы
Построение оценок в линейных моделях и изучение их свойств. Сравнение и применение точного, приближенного и бутстраповского подходов к инференции. Рассмотрение линейной и нелинейной регрессии среднего и линейных моделей с инструментальными переменными.
курс лекций, добавлен 28.12.2013Определение линейного коэффициента парной корреляции, уравнение линейной регрессии. Построение степенной модели путем логарифмирования частей уравнения. Построение гиперболической модели, коэффициент детерминации и средняя относительная ошибка.
контрольная работа, добавлен 10.06.2009Зависимость индекса человеческого развития от валового накопления и суточной калорийности питания населения. Расчет парных коэффициентов корреляции с помощью средних квадратических отклонений и показателей. Построение однофакторных уравнений регрессии.
контрольная работа, добавлен 13.01.2018Приведение геометрической иллюстрации простой и ортогональной регрессии в пространстве переменных и наблюдений. Выведение формулы для дисперсии ошибки среднего и формулы оценки Вальда углового коэффициента регрессии. Оценка параметров систем уравнений.
учебное пособие, добавлен 28.12.2013Основные демографические показатели Белгородской области за период с 2004 по 2017 год. Главная особенность построения уравнения множественной регрессии. Реализация проверки адекватности построенного уравнения регрессии с помощью F-критерия Фишера.
статья, добавлен 23.01.2019Этапы построения эконометрической модели. Оценка параметров линейной парной регрессии. Отбор факторов при построении множественной регрессии. Обобщенный метод наименьших квадратов в случае гетероскедастичности остатков. Составляющие временного ряда.
курс лекций, добавлен 10.02.2014Определение значения коэффициентов уравнения регрессии. Проверка значимости полученных коэффициентов. Построение модели на адекватность. Приведение уравнения к натуральному виду. Характеристика уравнений регрессии II порядка, среднее квадратическое.
курсовая работа, добавлен 04.01.2018Построение линейного уравнения парной регрессии. Расчет линейного коэффициента парной корреляции. Оценка статистической значимости уравнения регрессии. Расчет матрицы парных коэффициентов корреляции. Построение поля корреляции результативного признака.
контрольная работа, добавлен 01.03.2017Экономическая интерпретация коэффициента регрессии. Проверка значимости параметров уравнения регрессии с помощью t-критерия Стьюдента. Коэффициенты детерминации и средние относительные ошибки аппроксимации. Прогнозирование среднего значения показателя.
контрольная работа, добавлен 30.11.2013Уравнение линейной парной регрессии. Качественная оценка тесноты связи величин на основе шкалы Чеддока. Алгоритм оценки статистической значимости уравнения регрессии в целом. Методика расчета гиперболической, полулогарифмической и степенной моделей.
контрольная работа, добавлен 17.04.2014Особенности статистических методов планирования эксперимента с получением линейных моделей. Свойства полного факторного эксперимента типа 2k. Порядок заполнения и приемы построения матрицы планирования эксперимента. Расчет коэффициентов регрессии.
реферат, добавлен 08.03.2017Парная линейная регрессия. Вычисление неизвестных параметров с помощью метода наименьших квадратов. Коэффициенты корреляции, эластичности и аппроксимации. Создание нелинейной регрессии степенного и показательного вида. Уравнение равносторонней гиперболы.
контрольная работа, добавлен 27.06.2012Введение в регрессионный анализ и планирование эксперимента. Типовые задачи практики статистического изучения зависимостей. Проведение исследования нелинейной, непараметрической и пошаговой регрессии. Анализ оценки степени тесноты связи переменных.
курс лекций, добавлен 01.09.2017Вычисление параметров уравнения линейной регрессии; экономическая интерпретация коэффициента регрессии. Проверка значимости параметров регрессии с помощью t-критерия Стьюдента. Запись системы одновременных уравнений и проверка их на идентифицируемость.
контрольная работа, добавлен 29.10.2012Основные элементы эконометрической модели. Спецификация модели парной линейной регрессии. Основные предположения регрессионного анализа. Коэффициенты детерминации и парной корреляции. Проверка статистической значимости в парной линейной регрессии.
реферат, добавлен 27.12.2016Экономический анализ зависимости цены автомобиля от его возраста и мощности двигателя с помощью коэффициентов парной корреляции и множественной регрессии. Прогноз объёма продаж. Проверка регрессионных моделей на автокорреляцию и мультиколлинеарность.
контрольная работа, добавлен 07.01.2013Построение модели парной линейной регрессии, описывающей зависимость среднедушевых денежных расходов за месяц от среднемесячной начисленной заработной платы на человека. Расчет коэффициентов корреляции и детерминации. Анализ средней ошибки аппроксимации.
контрольная работа, добавлен 19.05.2012Практика расчета параметров уравнения парной линейной регрессии. Оценка тесноты связи с помощью показателей корреляции через t-критерий Стьюдента и детерминации, статистической надежности результатов регрессионного анализа с помощью F-критерия Фишера.
контрольная работа, добавлен 14.11.2011Уравнения линейной, гиперболической, степенной и показательной парной регрессии. Оценка тесноты связи с помощью показателей корреляции и детерминации. Оценка значимости коэффициентов регрессий с помощью критерия Стьюдента и доверительных интервалов.
контрольная работа, добавлен 24.12.2010Уравнение парной регрессии, её параметры: коэффициенты корреляции и эластичности, их значимость и доверительный интервал, ошибка аппроксимации, коэффициент детерминации. Матрица парных коэффициентов корреляции. Анализ параметров уравнения регрессии.
контрольная работа, добавлен 07.07.2015Рассмотрение алгоритма нелинейной оптимизации многомерных функций сложных эконометрических моделей численным методом приближений параболической вершины. Демонстрация эффективности оптимизации на примерах нелинейных решений эконометрических задач.
статья, добавлен 17.11.2016Примеры расчета параметров экономической модели. Анализ уравнений линейной, гиперболической парной регрессии. Оценка тесноты связи и значимости коэффициентов регрессий, определение статистической надежности результатов регрессионного моделирования.
контрольная работа, добавлен 22.11.2010Построение линейного уравнения парной регрессии на основе данных о среднедушевом прожиточном минимуме в день на одного трудоспособного жителя страны и о среднедневной заработной плате. Расчет коэффициента парной корреляции и средней ошибки аппроксимации.
контрольная работа, добавлен 21.02.2011Проведение методом линейной множественной регрессии идентификации модели, ее верификация. Оценка статистической значимости коэффициентов В0, В1, В2 с помощью t-статистики Стьюдента. Проверка наличия автокорреляции отклонений с помощью статистики Уотсона.
контрольная работа, добавлен 08.09.2014Оценка качества подгонки (значимости) линии регрессии к имеющимся данным. Средняя ошибка аппроксимации, анализ дисперсии, разложение отклонения от среднего. Свойства коэффициента детерминации, число степеней свободы. Дисперсионный анализ результатов.
презентация, добавлен 12.07.2015