Сверточные нейронные сети в задаче генерации изображений
Сверточная нейронная сеть как тип искусственной нейронной сети с прямой связью. Знакомство с историей и концепцией развития сверточных нейронных сетей. Характеристика результатов программного эксперимента в виде графиков и сгенерированных изображений.
Подобные документы
Изучение подходов к нормализации обучающего множества нейронной сети. Анализ существующих методов обучения нейронной сети Кохонена, их основные в преимущества и недостатки. Разработка нового конструктивного метода обучения на основе нейтронной сети.
статья, добавлен 26.04.2019Разработка программного модуля диагностики поведения роторной системы на основе нелинейных авторегрессионных моделей нейронных сетей и алгоритма обучения Левенберга-Марквардта. Применение искусственной нейронной сети в анализе динамических процессов.
статья, добавлен 01.02.2019Искусственная нейронная сеть, обеспечивающая последовательное выделение окрашенных гауссовых сигналов из смеси. Правило обучения каскадной нейронной сети, основанное на критерии минимума среднего квадрата ошибки предсказания, упрощающее реализацию сети.
статья, добавлен 22.07.2013Исследование особенностей применения эволюционных алгоритмов для настройки структуры и поиска весов связей искусственных нейронных сетей. Анализ вопросов эволюционного поиска топологии искусственной нейронной сети. Кодирование информации о весах связей.
статья, добавлен 08.02.2013Функционирование нейронных сетей. Функции активации. Топология элементарного однонаправленного персептрона. Трехслойный персептрон. Процедура построения персептрона. Алгоритм обратного распространения ошибки. Топология элементарной ВР-нейронной сети.
презентация, добавлен 16.10.2013Анализ вопросов использования нейронной сети для распознавания фигур технического анализа. Сравнение способов формирования входных образов. Конгломерат нейронных сетей для распознавания фигур технического анализа. Трактовка выходов нейронной сети.
статья, добавлен 27.04.2017Решение задач классификации бинарных входных векторов с использованием искусственной нейронной сети Хэмминга. Расчет матрицы весовых коэффициентов нейронов первого слоя. Сигналы нейронной сети Хэмминга, получаемые на протяжении полного цикла расчета.
статья, добавлен 12.06.2018Решение стегоанализа с применением искусственных нейронных сетей. Описание методики стеганографического анализа изображений, которая состоит в синтезе сигнатурного и статистического алгоритмов. Методика распознавания скрытой информации в изображениях.
статья, добавлен 16.05.2022Разработка искусственной нейронной сети, выделяющей акустический сигнал утечки из шума водопровода. Правило обучения сети, основанное на критерии минимума абсолютного значения момента четвертого порядка, упрощающее реализацию сети в реальном времени.
статья, добавлен 02.09.2013Исследование модели, основанной на использовании сверточных нейронных сетей. Выбор модели ResNet18 с финальной функцией активации Softmax и функцией потерь CrossEntropy. Особенность использования языка программирования Python и библиотеки PyTorch.
дипломная работа, добавлен 10.12.2019Описание искусственных нейронных сетей. Типы машинного обучения. Анализ существующих библиотек. Разработка алгоритма распознавания дорожных знаков с применением глубоких сверточных сетей и дополнительного классификатора J48. Результаты обучения алгоритма.
дипломная работа, добавлен 30.07.2016Понятие и основные компоненты нейронных сетей, классификация образов. Обучение по алгоритму обратного распространения ошибок. Сети с радиальными базисными функциями. Кластеризация образов, самоорганизующаяся карта признаков. Дискретная сеть Хопфилда.
книга, добавлен 18.01.2011Исследование решения задачи автоматического распознавания коридоров набивных стеллажей вилочными погрузчиками с использованием нейронной сети. Описания принципа работы и структуры нейронной сети. Проверка работоспособности построенной нейронной сети.
статья, добавлен 25.02.2019Автоматизация сбора, анализа и обработки данных в супермаркете. Разработка программы для распознавания лиц в живой очереди или изображений в реальном времени. Архитектура нейронной сети. Общий вид и назначение персептрона, оценка точности его работы.
статья, добавлен 25.02.2019Изучение способов поиска субоптимальных нейронных сетей. Архитектура системы поиска нейронной сети с помощью генетического алгоритма. Особенности работы операторов генетического алгоритма. Обучение нейронных сетей. Принципы стохастического моделирования.
статья, добавлен 29.04.2017Генеративные состязательные сети и их применение для увеличения качества изображений. Основные концепции GAN, включая архитектуру и принципы работы, примеры использования GAN для задач суперразрешения, устранения шума и восстановления изображений.
статья, добавлен 20.02.2025Нейронные сети и вычислительные системы на их основе. Алгоритмы генетического поиска для построения топологии и обучения нейронных сетей. Линейные преобразования векторов. Биологический нейрон и его строение. Признаковое и конфигурационное пространство.
курс лекций, добавлен 17.01.2011Анализ существующих систем в области идентификации изображений, их применение. Характеристика функциональной структуры подсистемы. Анализ выбора нейронной сети, моделирование подсистемы идентификации. Разработка базы сигналов и создание нейронной сети.
курсовая работа, добавлен 02.08.2015- 69. Нейронные сети
Понятие нейронных сетей, которые вошли в практику везде, где нужно решать задачи прогнозирования, классификации или автоматизации. Применение и возможности нейронных сетей. Аппроксимация функций по набору точек. Сжатие информации. Ассоциативная память.
реферат, добавлен 09.06.2016 Рассмотрение положений теории нейронных сетей, анализ разнообразия их архитектур. Методы и алгоритмы предварительной обработки данных. Моделирование структуры нейросети. Разработка алгоритмов обучения нейронной сети для уменьшения ошибки тестирования.
дипломная работа, добавлен 30.08.2016MATLAB как пакет прикладных программ для решения задач технических вычислений и одноимённый язык программирования, используемый в этом пакете. Создание нейронной сети в графическом интерфейсе. Экспортирование созданной нейронной сети в рабочую область.
контрольная работа, добавлен 30.05.2016Искусственные нейронные сети, основы описания многомерных тестовых данных. Построение области допустимых изменений параметров однородных групп, модели регрессии. Определение компонент дискретного конечного множества элементов. Нейронная сеть Хопфильда.
учебное пособие, добавлен 15.01.2018Специфические особенности алгоритма расчета порога бинаризации для полутонового изображения, реализованного на основе метода Оцу. Использование технологии искусственной нейронной сети для распознавания цифровых микроскопических изображений мокроты.
статья, добавлен 31.10.2017Повышение эффективности работы российских медицинских учреждений. Создание автоматизированных систем распознавания объектов, свёрточных нейронных сетей. Преимущества глубокого обучения и искусственного интеллекта в решении задач компьютерного зрения.
статья, добавлен 29.12.2024Особенности применения инновационных инструментов прогнозирования. В качестве основного метода, используемого для прогнозирования, применяются искусственные нейронные сети Хопфилда, представляющие собой нейронные сети на основе радиально-базисных функций.
статья, добавлен 15.12.2021