Дискретные случайные переменные и теория выборок
Непрерывные случайные числа, функция распределения вероятности. Вычисление математического ожидания функции дискретной случайной величины. Дисперсия и стандартное отклонение. Конфликт между несмещенностью и эффективностью. Среднеквадратичная ошибка.
Подобные документы
Построение гистограммы относительных частот. Минимальный и максимальный элементы выборки. Оценка математического ожидания (выборочного среднего), дисперсии, моды. Характеристика произвольной случайной величины. Эмпирическая функция распределения.
лабораторная работа, добавлен 27.03.2022- 102. Случайные величины
Случайные величины и их классификация, числовые характеристики: математическое ожидание, дисперсия. Статистические гипотезы и способы их проверки: сравнение двух генеральных совокупностей, двух биномиальных распределений, критерий согласия Пирсона.
контрольная работа, добавлен 12.01.2013 Изучение статического ряда частот и относительных частот выборки. Расчет оценки математического ожидания, дисперсии и среднеквадратичного отклонения. Закон распределения и вероятность попадания величины в заданный интервал по эмпирической функции.
реферат, добавлен 11.02.2014Классическая конструкция вероятности. Определение математического ожидания, среднего квадратического отклонения, плотности распределения случайной величины. Проверка статистических гипотез. Построение доверительного интервала. Ковариация и регрессия.
контрольная работа, добавлен 07.10.2015- 105. Случайные величины
Случайная величина – числовая функция, принимающая значения случайным образом. Дискретные распределения. Графическое задание ряда распределения. Смысл номера первого успешного испытания в схеме Бернулли с вероятностью успеха. Пуассоновская модель.
презентация, добавлен 27.09.2017 Оценка математического ожидания и дисперсии случайной величины. Анализ вероятности ее попадания в заданный интервал. Нахождение доверительных интервалов. Проверка правдоподобия гипотезы совпадении выбранного закона распределения с истинным в эксперименте.
контрольная работа, добавлен 17.10.2017Определение вероятности попадания двумя стрелками в мишень. Расчет вероятности безотказной работы устройства. Рассмотрение биномиального закона распределения дискретной случайной величины. Определение функции распределения и построение ее графика.
контрольная работа, добавлен 31.10.2017Анализ решения задач на комбинаторику. Описание задач по классической вероятностной модели, геометрической вероятности. Описание основных формул теории вероятности. Повторные независимые испытания, теорема Бернулли. Дискретные случайные величины.
задача, добавлен 05.05.2015Оценки математического ожидания и дисперсии случайной величины. Проверка правдоподобия гипотезы о совпадении выбранного закона распределения с истинным законом при заданном уровне значимости. Построение доверительной области для плотности распределения.
контрольная работа, добавлен 25.10.2017Определение вероятности появления события во множестве независимых опытов. Расчет математического ожидания и дисперсии величины Х. Расчет и построение графика функции распределения. Построение графиков случайных величин, определение плотности вероятности.
контрольная работа, добавлен 21.09.2023Определение вероятности по формулам Бернулли и Байеса. Проведение исследования интегрального закона распределения. Вычисление математического ожидания, дисперсии и среднеквадратического отклонения. Особенность построения статистического разделения.
контрольная работа, добавлен 24.05.2016Определение вероятности, следствие из принципа практической невозможности маловероятных событий. Теорема Муавра–Лапласа. Закон распределения случайной величины. Дискретная случайная величина. Математическое ожидание дискретной случайной величины.
контрольная работа, добавлен 12.11.2015Изучение основ комбинаторики. Классическое определение вероятности. Свойства математического ожидания. Понятие о критериях согласия. Виды уравнений регрессии. Методы анализа статистических данных. Применение закона распределения случайной величины.
учебное пособие, добавлен 18.10.2014Построение интервального и точечного статистического распределения результатов наблюдений, полигона и гистограммы относительных частот. Нахождение оценок математического ожидания и дисперсии. Проверка гипотезы распределения по критерию согласия Пирсона.
практическая работа, добавлен 11.11.2017Анализ классического определения вероятности. Описание теорем сложения и умножения вероятностей. Формула полной вероятности и формула Байеса. Изучение дискретных случайных величин. Нормальный закон распределения. Варианты задач по теории вероятности.
методичка, добавлен 27.05.2016Расчет нахождения точечных оценок распределения на основании выборок — ряда значений хi, принимаемых случайной величиной х в n независимых опытах. Оценка среднего квадратического отклонения случайной величины х как корня квадратного из дисперсии.
контрольная работа, добавлен 20.02.2014- 117. Теория вероятностей
Средняя арифметическая взвешенная, количество величин с одинаковым значением. Таблица Лапласа и линейная связь. Вероятность достоверного события и дисперсия случайной величины. Оценка математического ожидания. Дискретная и непрерывная случайная величина.
контрольная работа, добавлен 30.09.2013 Функция Гаусса как плотность распределения вероятности случайной величины, являющаяся математическим показателем. Применение таблицы значений функции Лапласа для нахождения нормального распределения. Определение интегральной формулы Муавра-Лапласа.
доклад, добавлен 10.02.2014Использование теоремы Муавра Лапласа при решении задачи по теории вероятности. Нахождение закона распределения, математического ожидания и дисперсии. Построение графика функции распределения, полигона относительных частот и гистограммы накопленных частот.
задача, добавлен 24.08.2015- 120. Теория вероятности
Классическое и статистическое определением вероятности события. Теоремы сложения и умножения вероятностей. Задача о повторении испытаний, формула Бернулли. Локальная и интегральная теоремы Лапласа. Закон распределения дискретной случайной величины.
контрольная работа, добавлен 17.04.2015 Понятия случайной величины и события. Основные законы распределения, используемые в теории надежности. Математическое ожидание и среднеквадратическое отклонение числа событий. Определение интенсивности отказов и вероятности безотказной работы устройства.
реферат, добавлен 18.10.2016- 122. Теория вероятностей
Понятие и примеры случайного события. Правила сложения и умножения в комбинаторике. Формулы вычисления вероятностей. Локальная и интегральная теоремы Муавра–Лапласа. Классы функций распределения. Непрерывные случайные величины. Закон больших чисел.
краткое изложение, добавлен 21.03.2018 - 123. Случайные величины
Сумма и произведение событий. Закон распределения случайных величин и их числовые характеристики, формула полной вероятности и теорема гипотез. Плотность и свойства функции распределения. Закон распределения Пуасона и теорема о числовых характеристиках.
шпаргалка, добавлен 14.11.2010 Принципы применения методов теории вероятностей и математической статистики для решения статистических задач. Построение гистограммы относительных частот. Эмпирическая функция распределения случайной величины. Оценка математического ожидания выборки.
контрольная работа, добавлен 16.11.2017Общее понятие случайной величины. Гистограмма как графическое изображение зависимости частоты попадания элементов выборки от соответствующего интервала группировки. Характеристика и особенности закона распределения дискретной случайной величины.
контрольная работа, добавлен 15.12.2012