Деякі класи операторів, що діють в просторах аналітичних функцій і пов’язані з комутаційними співвідношеннями

Розв’язки операторних рівнянь, що містять оператори узагальненого зсуву, композиції, узагальненого диференціювання і узагальненого інтегрування. Зображення лінійних неперервних операторів, що переставні, які пов’язані зсувами і діють в довільних областях.

Подобные документы

  • Дослідження питання про існування алгебр фон Неймана. Вивчення процесу доведення аналогів домінантної ергодичної теореми для послідовностей абсолютних стисків симетричних просторів вимірних операторів, приєднаних до комутативної алгебри фон Неймана.

    автореферат, добавлен 25.07.2014

  • Умови збіжності матриць Гріна лінійних крайових задач для систем диференціальних рівнянь першого порядку по нормі простору Лебега. Аналіз неперервності за параметром розв’язків лінійних крайових задач для систем диференціальних рівнянь першого порядку.

    автореферат, добавлен 27.08.2015

  • Поняття, означення й теорема про достатні умови існування і єдності розв’язку. Знаходження кривих, підозрілих на особливий розв’язок. Випадки, коли рівняння можна проінтегрувати. Загальний метод введення параметра, неповні рівняння. Розв’язок задачі Коші.

    реферат, добавлен 06.11.2017

  • Розробка підходу для вивчення математичних операторів. Побудова сингулярних інтегральних моделей, доведення існування символів для них. Розгляд основ задачі Рімана-Гільберта. Функціональні моделі й метричні вузли для операторів, що близькі до нормальних.

    автореферат, добавлен 28.07.2014

  • Обґрунтування розв'язності класу диференціально-операторних рівнянь II порядку з некоерцитивними немонотонними відображеннями типу Вольтера. Доведення теореми про розв'язність для спеціального класу некоерцитивних диференціально-операторних включень.

    автореферат, добавлен 28.08.2015

  • Встановлення умов глобальної розв’язності та нерозв’язності задачі Коші для виродного параболічного рівняння з нелокальним джерелом. Аналіз визначення початкових функцій, що повільно спадають до нуля та містять нелокальний множник у від’ємному степені.

    автореферат, добавлен 28.10.2015

  • Спеціальні заміни змінних для проведення редукції і ефективного пошуку точних розв'язків нелінійних рівнянь реакції-дифузії, які є узагальненнями симетрійних і умовно-симетрійних анзаців. Частинні розв'язки рівняння Колмогорова–Петровського–Піскунова.

    автореферат, добавлен 28.10.2015

  • Алгоритми розв’язування систем лінійних рівнянь з невідомими та параметрами. Використання квадратних рівнянь з параметрами при розв’язуванні фізичних задач. Алгебраїчні, ірраціональні, показникові, логарифмічні та тригонометричні рівняння з параметрами.

    учебное пособие, добавлен 17.02.2022

  • Дослідження послідовностей нулів та сингулярних граничних функцій деяких класів функцій, аналітичних у півплощині, які визначаються заданими мажорантами. Одержання критерію розв'язності інтерполяційної задачі в класі функцій, аналітичних у півплощині.

    автореферат, добавлен 11.11.2013

  • Огляд методів гарантованого оцінювання значень лінійних функціоналів, визначених на розв’язках вироджених крайових задач Неймана для еліптичних рівнянь і на їх правих частинах. Доведення однозначної розв’язності систем інтегро-диференціальних рівнянь.

    автореферат, добавлен 27.07.2014

  • Розроблення та опис прикладу алгоритму розв'язування лінійних рівнянь з однією змінною. Спрощення виразів в лівій та правій частинах рівняння окремо через розкриття дужок та зведення подібних доданків. Основні принципи знаходження невідомого множника.

    лекция, добавлен 26.09.2018

  • Дослідження диференціальних та диференціально-граничних операторів з некласичними крайовими умовами та їх абстрактних моделей. Критерії максимальної дисипативності та максимальної акретивності досліджуваних класів диференціально-граничних операторів.

    автореферат, добавлен 19.07.2015

  • Вивчення геометричного змісту похідної. Розгляд застосування похідної для розв’язання рівнянь і нерівностей. Описання методу наближеного знаходження кореня рівняння, методів хорд і дотичних. Розв’язування економічних задач за допомогою диференціювання.

    дипломная работа, добавлен 29.01.2015

  • Характеристика методів послідовного виключення, Гаусса, Крамера та інших точних, ітераційних та ймовірнісних методів розв'язування систем лінійних алгебраїчних рівнянь. Приклади та алгоритм їх рішення. Обчислення визначника матриці за правилом Саррюса.

    контрольная работа, добавлен 13.12.2013

  • Метод нерівноважних кластерних розкладів побудови розв'язку ланцюжка рівнянь Боголюбова на випадок квантових систем частинок. Доведення теореми існування та єдиності кумулянтного зображення розв'язку початкової задачі ланцюжка рівнянь квантових систем.

    автореферат, добавлен 25.02.2015

  • Знаходження непокращуваних нерівностей для похідних функцій зі спеціальних функціональних класів, розв'язок задачі про наближення необмежених операторів лінійними операторами. Узагальнена задача Колмогорова про існування елемента нормованого простору.

    автореферат, добавлен 20.07.2015

  • Історичний обрис розвитку теорії диференціальних рівнянь. Лінійні однорідні та неоднорідні рівняння 2-го порядку з сталими коефіцієнтами. Основні види диференціальних рівнянь 1-го та 2-го порядку та методи їх розв’язування. Графічний метод інтегрування.

    реферат, добавлен 29.11.2014

  • Знакосталість компонента матриці A та вектора b. Алгоритми з розв’язання систем лінійних алгебраїчних рівнянь як багатократних агрегативно-ітеративних. Умови збіжності ітераційного процесу. Спектральне представлення лінійного компактного оператора.

    автореферат, добавлен 05.01.2014

  • Встановлення умов розв’язуваності крайових задач для лінійних та слабконелінійних інтегро-диференціальних рівнянь з параметрами та обмеженнями і розробка ефективних методів проекційно-ітеративного типу побудови їх розв’язків. Теорії інтегральних рівнянь.

    автореферат, добавлен 20.07.2015

  • Поняття еквівалентних перетворень системи векторів, операції над матрицями та їхні властивості. Обчислення оберненої матриці елементарними перетвореннями. Загальні відомості про системи лінійних рівнянь, особливості та розрахунок діагональної матриці.

    контрольная работа, добавлен 16.07.2017

  • Оцінка ефективності явних обчислювальних схем числового розв’язку задачі Коші для звичайного диференціального рівняння. Рекомендації щодо ефективного застосування методу диференціально-тейлорівських перетворень для числового інтегрування рівнянь.

    статья, добавлен 29.07.2016

  • Дослідження розвитку теорiї задач Кошi. Характеристика еволюційних рівнянь, які містять псевдо-Бесселеви оператори в класах початкових умов. Розгляд просторів математичних функцій. Обґрунтування властивостей перетворення Бесселя та Фур’є-Бесселя.

    автореферат, добавлен 29.10.2013

  • Методи розв’язку лінійних однорідних диференціальних рівнянь зі сталими коефіцієнтами. Властивості розв’язку однорідних рівнянь методом Ейлера та матричним. Задача Коші: частинний розв’язок неоднорідних систем, що задовольняє нульовій початковій умові.

    контрольная работа, добавлен 08.11.2017

  • Суть функціонального рівняння. Розв'язання функціонального рівняння способом заміни та утворенням системи лінійних рівнянь. Задачі про існування функції при певних умовах. Розв'язання нестандартних функціональних рівнянь. Суть графічного розв’язання.

    курсовая работа, добавлен 02.01.2014

  • Характеристика невизначеного інтеграла: поняття первісної функції та невизначеного інтеграла; основні методи інтегрування; інтеграли, що містять квадратний тричлен; інтегрування дробово-раціональних функцій і виразів, що містять тригонометричні функції.

    лекция, добавлен 30.04.2014

Работы в архивах красиво оформлены согласно требованиям ВУЗов и содержат рисунки, диаграммы, формулы и т.д.
PPT, PPTX и PDF-файлы представлены только в архивах.
Рекомендуем скачать работу и оценить ее, кликнув по соответствующей звездочке.