Оценка существенности (значимости) уравнения регрессии и параметров парной линейной регрессии

Оценка качества подгонки (значимости) линии регрессии к имеющимся данным. Средняя ошибка аппроксимации, анализ дисперсии, разложение отклонения от среднего. Свойства коэффициента детерминации, число степеней свободы. Дисперсионный анализ результатов.

Подобные документы

  • Сущность множественного регрессионного анализа. Проблемы коррекции гетероскедастичности с помощью тестов Голдфельда-Квандта и Глейзера. Проверка качества уравнения регрессии и значимости коэффициента детерминации. Неоднородность дисперсий ошибок.

    контрольная работа, добавлен 05.10.2013

  • Характеристика особенностей линейного парного регрессионного анализа. Методические указания по решению задач по расчету коэффициента линейной парной корреляции и построения уравнения линейной парной регрессии. Анализ множественного регрессионного анализа.

    методичка, добавлен 16.08.2014

  • Основные типы эконометрических моделей и исходные данные для их построения. Оценка статистической значимости параметров линейной модели множественной и парной регрессии. Применение эконометрических моделей для прогнозирования, примеры их построения.

    учебное пособие, добавлен 07.05.2015

  • Прогнозирование с помощью моделей парной линейной, квадратичной регрессии. Статистическая значимость параметров регрессии и корреляции. Допущения и свойства оценок при использовании метода наименьших квадратов. Идентифицируемость структурных моделей.

    лабораторная работа, добавлен 05.09.2013

  • Решение задач по нахождению параметров уравнения линейной регрессии и нахождение экономической интерпретации ее коэффициента. Вычисление остатков и оценка их дисперсии, проверка пара

    контрольная работа, добавлен 23.01.2014

  • Оценка качества экономической модели с помощью коэффициента детерминации. Проверка общего уравнения регрессии. Скорректированный коэффициент детерминации, его свойства. Выполнение сравнения между двумя конкурирующими фирмами производителей колготок.

    контрольная работа, добавлен 07.03.2016

  • Классификация и информационная база эконометрических моделей. Сущность однофакторной линейной регрессии. Подбор параметров прямой регрессии по методу наименьших квадратов. Нулевая и конкурирующая гипотезы. Проверка линейной регрессии на адекватность.

    учебное пособие, добавлен 14.04.2015

  • Основные демографические показатели Белгородской области за период с 2004 по 2017 год. Главная особенность построения уравнения множественной регрессии. Реализация проверки адекватности построенного уравнения регрессии с помощью F-критерия Фишера.

    статья, добавлен 23.01.2019

  • Построение и анализ линейной множественной регрессии. Системы одновременных уравнений и их идентификация. Анализ временных рядов и прогнозирование. Интерпретация коэффициентов регрессии. Проверка на наличие автокорреляции и гетероскедастичность.

    контрольная работа, добавлен 02.08.2013

  • Построение уравнения регрессии с помощью метода наименьших квадратов. Матричный подход в регрессионном анализе. Оценка вариации уравнения регрессии и проверка гипотез о наклоне и коэффициенте корреляции. Оценка математического ожидания значений отклика.

    учебное пособие, добавлен 22.11.2012

  • Понятие математической и экономико-математической модели. Оценка значимости коэффициентов уравнения парной линейной регрессии, построение доверительных интервалов для коэффициентов. Основные показатели межотраслевого баланса и их экономический смысл.

    контрольная работа, добавлен 26.01.2015

  • Расчет линейного уравнения множественной регрессии; его оценка на основе коэффициента детерминации и общего критерия Фишера. Расчет параметров линейного, экспоненциального, степенного, гиперболического трендов по данным о средних потребительских ценах РФ.

    контрольная работа, добавлен 01.12.2013

  • Анализ понятия и основных задач эконометрики - отрасли науки, цель которой состоит в том, чтобы придать количественные меры экономическим отношениям. Оценка существенности параметров парной линейной регрессии и корреляции в эконометрических исследованиях.

    лекция, добавлен 13.02.2011

  • Методологические основы применения регрессионного анализа в эконометрике. Интервальная оценка функции регрессии и параметров модели. Особенности использования коэффициента детерминации. Определение дисперсии и проверка достоверности по критерию Фишера.

    курсовая работа, добавлен 17.09.2014

  • Определение значения коэффициентов уравнения регрессии. Проверка значимости полученных коэффициентов. Построение модели на адекватность. Приведение уравнения к натуральному виду. Характеристика уравнений регрессии II порядка, среднее квадратическое.

    курсовая работа, добавлен 04.01.2018

  • Оценка и расчёт значимости коэффициентов уравнения множественной регрессии и корреляции с помощью f-критерия Стьюдента и t-статистики Стьюдента: интерпретация параметров, коэффициентов эластичности и стандартизированных бетта-коэффициентов уравнения.

    реферат, добавлен 08.06.2012

  • Построение однофакторной и двухфакторной моделей регрессии. Анализ влияния фактора на зависимую переменную по моделям с помощью коэффициентов детерминации, множественной корреляции, эластичности и установление степени линейной связи между переменными.

    практическая работа, добавлен 16.05.2013

  • Линейная модель парной регрессии и корреляции. Проверка существенности факторов и показатели качества регрессии. Методы оценки структурной формы модели. Автокорреляция уровней временного ряда. Моделирование сезонных колебаний, критерий Дарбина-Уотсона.

    курс лекций, добавлен 27.11.2013

  • Установление мультиколлинеарности факторов. Уравнение множественной регрессии в линейной форме с полным набором факторов. Статистическая значимость уравнения и его параметров с помощью критериев Фишера и Стьюдента. Расчет коэффициентов эластичности.

    задача, добавлен 16.03.2014

  • Линейная процедура получения оценок параметров уравнения и условия, при которых она дает несмещенные и эффективные оценки, в теореме Гаусса-Маркова. Доказательство теоремы, расчет дисперсии прогнозирования. Оценка уравнений регрессии с помощью Excel.

    презентация, добавлен 02.10.2011

  • Оценка линейного коэффициента множественной корреляции, коэффициента детерминации, средних коэффициентов эластичности, бетта–, дельта–коэффициентов двухфакторной регрессионной модели. Коэффициент детерминации модели, прогноз результирующего показателя.

    контрольная работа, добавлен 16.04.2012

  • Изучение динамики товарооборота. Эконометрические модели товарооборота. Дисперсионный анализ для линейной регрессии. Показательный тренд. Множественный регрессионный анализ товарооборота. Построение регрессии. Коэффициенты корреляции. Мультиколлинеарность

    реферат, добавлен 21.08.2008

  • Расчет среднего отклонения и доверительного интервала для генерального среднего выручки. Нахождение методом наименьших квадратов уравнения прямой линии регрессии, построение графика корреляционных зависимостей. Оценка адекватности регрессионных моделей.

    контрольная работа, добавлен 26.02.2010

  • Основные понятия и определения эконометрики и эконометрического моделирования. Парная корреляция и регрессия, проверка значимости параметров парной линейной модели. Виды линейной модели множественной регрессии. Системы линейных одновременных уравнений.

    курс лекций, добавлен 26.11.2013

  • Оценка статистической значимости уравнения регрессии и ее параметров, с помощью критериев Фишера и Стьюдента. Построение матрицы парных коэффициентов корреляции, установление мультиколлинеарных факторов. Результаты, оформление аналитической записки.

    контрольная работа, добавлен 10.03.2011

Работы в архивах красиво оформлены согласно требованиям ВУЗов и содержат рисунки, диаграммы, формулы и т.д.
PPT, PPTX и PDF-файлы представлены только в архивах.
Рекомендуем скачать работу и оценить ее, кликнув по соответствующей звездочке.