Топологические пространства
Определение топологического пространства, классическое определение непрерывности числовой функции. Отображения для любой пары произвольных множеств. Окрестностью точки в топологическом пространстве, предел последовательности точек, топология Зарисского.
Подобные документы
Статистическое определение вероятности случайного события и меры статистической закономерности появления события. Применение графической диаграммы Эйлера из теории множеств. Определение свойства относительной частоты и пространства элементарных событий.
лекция, добавлен 26.09.2017Сущность задачи на нахождение геометрического места точек пространства. Серединная плоскость скрещивающихся прямых. Гиперболический параболоид как поверхность второго порядка. Окружность и сфера Аполлония. Метод в стереометрических задачах на построение.
реферат, добавлен 24.12.2013Проекционная конфигурация как совокупность трёх ортогональных проекций прямой линии и одномерных моделей пространства. Определение точек, соответствующих равноудаленности от трёх пар плоскостей проекций. Алгоритмы построения трехкартинных отображений.
статья, добавлен 12.09.2021Теорема о непрерывности производных недифференцируемых функций. Определение координат в окрестности точки. Частные приращения по переменной и образованной от существующих пределов. Понятие дифференцируемости и производной сложной формулы двух аргументов.
лекция, добавлен 26.01.2014Определение предела функции f(x) в точке x0 по Гейне и Коши. Основные свойства пределов. Понятие предела функции в точке. Основные теоремы о пределах, признаки их существования. Определение предела частного и произведения двух функций, сложной функции.
контрольная работа, добавлен 27.04.2015- 56. Сфера и шар
Сфера - фигура, состоящая из всех точек пространства, удалённых от данной точки на данном расстоянии. Понятие шара. Взаимное расположение сферы и плоскости. Точка их касания. Определение площади сферы. Доказательство теорем о касательной к плоскости.
реферат, добавлен 08.05.2013 Анализ полученных результатов, связанных с обобщением неравенств Харди-Литтлвуда-Полиа на случай достаточно произвольных операторов, действующих в сепарабельном пространстве. Анализ сепарабельного гильбертового пространства над полем комплексных чисел.
статья, добавлен 30.10.2016Область определения функции двух переменных. Виды множеств точек. Понятия линии уровня, предела и непрерывности. Скорость изменения функции в данном направлении. Взаимосвязь градиента и производной. Свойство касательной плоскости и нормаль к поверхности.
презентация, добавлен 29.09.2017Каноническое отображение самопринадлежащих множеств как неподвижных точек отображения множества всех множеств в себя, порождаемых отношением принадлежности (с учетом транзитивности принадлежности объектов, принадлежащих самопринадлежащему объекту).
статья, добавлен 26.04.2019Ограниченные и замкнутые множества. Характеристика множеств в пространствах любого числа измерений. Анализ задач, приводящих к понятию функции нескольких переменных. Геометрический смысл производной. Предел, непрерывность и дифференцируемость функции.
лекция, добавлен 12.07.2015Рассмотрение предела числовой последовательности. Изучение основных правил дифференцирования производных. Важные теоремы о последовательностях и функциях. Производная алгебраической суммы уравнения. Определение скорости при произвольном законе движения.
презентация, добавлен 18.12.2014Рассмотрение характера изменения функции при возрастании значения аргумента. Символическая запись предела последовательности. Изучение основных теорем о бесконечно малых функциях. Примеры разделения числителя и знаменателя на наибольшее выражение.
контрольная работа, добавлен 11.01.2014Вычисление значения функции в точках, подозрительных на глобальный экстремум. Нахождение наклонной асимптоты, точек, в которых производная функции равна нулю. Определение промежутков выпуклости и точек перегиба функции. Построение эскиза графика функции.
контрольная работа, добавлен 26.04.2012Изолированные особые точки аналитической функции. Определение вычетов. Нули аналитической функции. Понятие изолированных особых точек, их определение. Теорема о связи нулей и полюсов. Вычет аналитической функции в особой точке. Основная теорема о вычетах.
контрольная работа, добавлен 30.07.2017Понятие и сущность гладкой поверхности, порядок и принципы определения ее площади. Вычисление поверхностных интегралов первого и второго порядка. Скалярное поле как совокупность двух множеств: множества точек пространства и соответствующих чисел.
лекция, добавлен 18.10.2013Анализ понятия и свойств непрерывных функций. Характеристика непрерывности некоторых элементарных функций. Классификация точек разрыва. Описание непрерывности функции в точке, на интервале и отрезке. Анализ экономического смысла непрерывной функции.
курсовая работа, добавлен 07.04.2016Функция двух переменных – область определения, график. Виды множеств точек. Понятия линии уровня, предела и непрерывности. Частные производные первого порядка. Производная по направлению и градиент. Касательная плоскость и нормаль к поверхности.
презентация, добавлен 29.10.2017Аксиомы линейного пространства. Понятие вектора как элемента множества. Определение линейной комбинации векторов и ее выражение. Базис линейного пространства. Равенство ранга матрицы для независимых векторов. Пример решения линейной зависимости.
лекция, добавлен 26.01.2014Понятие предела последовательности. Характерные примеры вычисления пределов последовательности с подробным разбором решения. Теорема Вейерштрасса и примеры её применения на практике. Вычисление искомого предела, не прибегая к вспомогательным неравенствам.
курсовая работа, добавлен 07.11.2013Основные топологические понятия; аксиомы топологии и примеры некоторых соотношений в топологических пространствах. Булева алгебра и регулярные замкнутые множества: булево объединение и булево пересечение произвольного семейства элементов булевой алгебры.
курсовая работа, добавлен 07.07.2012Определение функции, ее свойства. Основные элементарные функции. Предел функции в точке, способы его вычисления. Вычисление предела отношения бесконечно малых функций. Раскрытие неопределенностей. Доказательство первого и второго замечательных пределов.
лекция, добавлен 29.09.2014пределение основных аксиом плоскости и точек пространства, принадлежащих и не принадлежащих плоскости. Исследование аксиом, характеризующих взаимодействие точек и прямых. Определение основных свойств отрезков и равенства треугольников в одной плоскости.
презентация, добавлен 13.04.2012Особенности декартовой системы координат в трехмерном пространстве. Понятие предела, непрерывность функции нескольких переменных. Свойства функций непрерывных в ограниченной замкнутой области. Определение частной производной функции нескольких аргументов.
контрольная работа, добавлен 29.05.2015Описание аналога теоремы Какутани о неподвижных точках многозначного отображения в теории множеств с самопринадлежностью. Суть рекомбинации товаров при производстве новых товаров. Совпадение видов неподвижных точек с действительной структурой экономики.
статья, добавлен 26.04.2019Анализ пространства как трехмерного континуума. Возможность четырехмерной трактовки "мира". Оценка пространства Минковского как четырёхмерного псевдоевклидового пространства сигнатуры, предложенного в геометрической интерпретации пространства-времени.
реферат, добавлен 15.05.2016