Создание программного обеспечения для решения кубических уравнений с использованием формулы Кардано

Изучение методов решения кубических уравнений, формула Кардано. Подробный алгоритм решения уравнений третьей степени и его реализация в объектно-ориентированной среде Delphi. Модуль комплексных чисел. Определение значения аргумента кубического корня.

Подобные документы

  • Методика решения интегральных уравнений типа свертки, их классификация. Краевые задачи типа Карлемана для полосы, задача Карлемана с дробно рациональным коэффициентом и с интегральным условием. Особенности сингулярных интегральных уравнений и их решение.

    дипломная работа, добавлен 06.07.2014

  • Понятие целых и дробных уравнений. Определение многочлена стандартного вида. Понятие уравнения с одной переменной. Основные методы решения целых уравнений. Понятие и определение степени уравнения. Определение корня линейного и квадратного уравнения.

    презентация, добавлен 14.01.2015

  • Сущность совместной системы уравнений. Признаки несовместной системы уравнений. Понятие эквивалентной системы уравнений. Элементарные преобразования системы. Гаусс Карл Фридрих как выдающийся немецкий математик. Решение уравнений методом Гаусса.

    презентация, добавлен 14.01.2018

  • Решение уравнений в школьной программе. Потребность в комплексных числах. Извлечение корней, понятие квадратных уравнений. Преобразование кубичных уравнений. Решение уравнений в радикалах и существование корней уравнений. Приближённое решение уравнений.

    презентация, добавлен 06.12.2011

  • Понятие и математическое описание рациональных уравнений и неравенств. Иррациональные уравнения и дробные неравенства. Особенности методов изучения тригонометрических и логарифмических уравнений. Трансцендентные неравенства и основные методы их решения.

    презентация, добавлен 08.09.2013

  • Алгоритм выполнения задачи решения уравнения с одной переменной с нахождением всех его корней или установление доказательства, что корни отсутствуют. Понятие корня линейного равенства. Правила раскрытия скобок. Задания для самостоятельного решения.

    презентация, добавлен 14.10.2013

  • Анализ сущности и свойств тригонометрических и обратных тригонометрических функций. Характеристика основных методов решения элементарных тригонометрических уравнений, а также примеры решения нестандартных тригонометрических уравнений и неравенств.

    курсовая работа, добавлен 09.11.2017

  • Матрицы и действия над ними. Система n линейных уравнений с n неизвестными. Правило Крамера. Использование метода Гаусса решения общей. Критерий совместности общей. Решение систем линейных уравнений на экзаменах в различных математических вузах.

    реферат, добавлен 02.02.2022

  • Приближённые методы решения систем линейных алгебраических уравнений. Интерполяция, аппроксимация; интерполяционный многочлен. Приближённое интегрирование функций. Численное решение трансцендентных, нелинейных и обыкновенных дифференциальных уравнений.

    курс лекций, добавлен 26.09.2017

  • Методы получения функционального уравнения для доказательства великой теоремы Ферма. Исследование матрицы распределения составных чисел в ряду натуральных числовых значений. Составление системы уравнений для нахождения показателей пифагоровых троек.

    учебное пособие, добавлен 30.03.2017

  • Изучение особенностей интегральных уравнений, которые в совокупности с численными методами их решения являются средством исследования и математического моделирования задач математической физики. Изучение метода моментов, итераций, Ритца, Келлога.

    курсовая работа, добавлен 21.04.2015

  • Модуль как расстояние от нуля до числа, которое выражено в единичных отрезках. Характеристика основных признаков простейших уравнений и неравенств. Исследование алгоритма раскрытия модуля неравенства в зависимости от знака подмодульного выражения.

    статья, добавлен 22.02.2017

  • Сущность и принципы использования метода Ньютона, его геометрическая интерпретация, примеры применения на практике, алгоритм решения задач. Механизм решения систем нелинейных алгебраических уравнений. Содержание и значение методов спуска и итерации.

    реферат, добавлен 31.10.2013

  • Основные методы и алгоритмы вычислительной математики. Точные и приближенные числа, классификация погрешностей. Интерполирование функций, формула Лагранжа. Методы решения нелинейных уравнений, матричных уравнений и задач на собственные значения.

    учебное пособие, добавлен 16.12.2016

  • Формулы теории матриц для систем обыкновенных дифференциальных уравнений. Формулы построчного ортонормирования переносимых матричных уравнений краевых условий жестких краевых задач. Вариант расчета вектора частного решения систем неоднородных ОДУ.

    контрольная работа, добавлен 17.07.2016

  • Методика вычисления вектора частного решения неоднородной системы дифференциальных уравнений при помощи представления матрицы Коши под знаком интеграла в виде ряда. Алгоритм расчета линейных алгебраических уравнений в объединенном матричном виде.

    статья, добавлен 26.06.2016

  • Понятие системы линейных алгебраических уравнений с неизвестными. Основная и расширенная матрица системы. Определение совместной и несовместной системы линейных уравнений. Пример решения системы. Вычисление алгебраических дополнений. Формулы Крамера.

    лекция, добавлен 26.01.2014

  • Разностные методы решения краевых задач для уравнений в частных производных. Методы решения сеточных уравнений - специфическая система линейных алгебраических уравнений. Аппроксимация. Теорема о сходимости разностной схемы. Метод верхней релаксации.

    курсовая работа, добавлен 06.05.2015

  • Уравнение Пелля как одно из наиболее изученных диофантовых уравнений. Использование алгебраических чисел и диофантовых приближений для решения уравнений. Нелинейные рекуррентные формулы для решений уравнения Пелля. Рекуррентная цепочка равенств.

    реферат, добавлен 22.11.2018

  • Применение приближенных (численных) способов нахождения корней системы матричных уравнений с большим числом неизвестных. Содержание методов простых итераций, Зейделя, релаксации, используемых в решении уравнений. Теорема сходимости итерационного процесса.

    лекция, добавлен 21.09.2017

  • Методы решения систем линейных уравнений: Гаусса (последовательного исключения), Крамера, матричный метод. Классификация систем линейных уравнений по числу уравнений, неизвестных. Свойства определителей. Система ступенчатого вида с единственным решением.

    контрольная работа, добавлен 23.04.2011

  • Определение уравнений Риккати и характеристика ряда его свойств. Анализ некоторых особенностей решения данного вида дифференциальных уравнений. Интегрируемость уравнений Риккати в конечном виде. Примеры уравнений Риккати, имеющих конечное решение.

    курсовая работа, добавлен 19.01.2016

  • Реализация нового численного метода решения систем линейных алгебраических уравнений, основанного на целенаправленном хаотическом поиске, стохастических вычислениях и использовании облачных технологий. Особенность генерирования векторов на итерации.

    статья, добавлен 12.01.2018

  • Решение в действительных числах системы линейных уравнений. Применение информационных технологий. Проверка правильности в виде результатов подстановки каждого корня в исходную систему уравнений. Использование матричного метода решения при расчетах.

    статья, добавлен 28.06.2015

  • Ознакомление с деятельностью Архимеда, который открыл все полуправильные многогранники, развил учение о конических сечениях, дал геометрический способ решения кубических уравнений. Характеристика работы "Квадратура параболы". Анализ понятия экстремума.

    реферат, добавлен 11.09.2014

Работы в архивах красиво оформлены согласно требованиям ВУЗов и содержат рисунки, диаграммы, формулы и т.д.
PPT, PPTX и PDF-файлы представлены только в архивах.
Рекомендуем скачать работу и оценить ее, кликнув по соответствующей звездочке.